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ABSTRACT: Electrophilically reactive drug metabolites are
implicated in many adverse drug reactions. In this mechanism
termed bioactivationmetabolic enzymes convert drugs into
reactive metabolites that often conjugate to nucleophilic sites
within biological macromolecules like proteins. Toxic metabolite-
product adducts induce severe immune responses that can cause
sometimes fatal disorders, most commonly in the form of liver
injury, blood dyscrasia, or the dermatologic conditions toxic
epidermal necrolysis and Stevens−Johnson syndrome. This study
models four of the most common metabolic transformations that
result in bioactivation: quinone formation, epoxidation, thiophene
sulfur-oxidation, and nitroaromatic reduction, by synthesizing
models of metabolism and reactivity. First, the metabolism models
predict the formation probabilities of all possible metabolites among the pathways studied. Second, the exact structures of these
metabolites are enumerated. Third, using these structures, the reactivity model predicts the reactivity of each metabolite. Finally, a
feedfoward neural network converts the metabolism and reactivity predictions to a bioactivation prediction for each possible
metabolite. These bioactivation predictions represent the joint probability that a metabolite forms and that this metabolite
subsequently conjugates to protein or glutathione. Among molecules bioactivated by these pathways, we predicted the correct
pathway with an AUC accuracy of 89.98%. Furthermore, the model predicts whether molecules will be bioactivated, distinguishing
bioactivated and nonbioactivated molecules with 81.06% AUC. We applied this algorithm to withdrawn drugs. The known
bioactivation pathways of alclofenac and benzbromarone were identified by the algorithm, and high probability bioactivation
pathways not yet confirmed were identified for safrazine, zimelidine, and astemizole. This bioactivation modelthe first of its kind
that jointly considers both metabolism and reactivityenables drug candidates to be quickly evaluated for a toxicity risk that often
evades detection during preclinical trials. The XenoSite bioactivation model is available at http://swami.wustl.edu/xenosite/p/
bioactivation.

■ INTRODUCTION

Adverse Drug Reactions (ADRs) are amajor challenge for global
public health. Independent investigations of diverse populations
implicated ADRs in 6.5%,1 8.1%,2 8.7%,3 and 12.8%4 of hospital
admissions. Similarly, a meta-analysis of U.S. hospital pro-
spective studies found that 6.7% of patients had severe ADRs,
with a fatality rate of 0.32%.5 Extrapolating from those results,
the FDA estimated that annual ADRs in the U.S. cause over
2,216,000 hospitalizations and more than 106,000 deaths.6

Furthermore, predicated on the meta-analysis’s accuracy, the
FDA proposed that ADRs are the fourth leading cause of death
in the U.S., exceeding automobile deaths, diabetes, AIDS,
pulmonary disease, and pneumonia.6 Some ADRs are traceable
to the pharmacological effects of certain drugs, and this
mechanistic understanding can inform efforts to reduce risk.7

However, a subset of ADRsidiosyncratic adverse drug
reactions (IADRs)has elusive etiologies.
These IADRs strike seemingly at random, with unpredictable

and often severe symptoms. Most commonly, IADRs cause liver
disorders but can also induce dangerous skin diseases, including

Stevens-Johnson syndrome and toxic epidermal necrolysis, as
well as dangerous blood disorders such as agranulocytosis or
aplastic anemia.8−18 In the U.S., IADRs are responsible for about
half of all acute liver failure cases and 15% of liver transplants.19

Nevertheless, IADRs are rare overall, only occurring in about 1
in 10,000 to 1 in 100,000 patients.20 As a result, many IADR-
causing drugs can slip through all stages of preclinical trials,
which even in their largest phase generally only have about 3,000
patients.8 After approval and market release, however, exposure
to much larger patient populations can reveal a drug’s hidden
risk. Indeed, already-approved drugs are most commonly
withdrawn from the market due to intolerable numbers of
IADR cases.21−25 Even if a drug is not withdrawn, it may be
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labeled with a “black box” warning by the FDA, significantly
curtailing its profitability.26

Devising early detection methods for IADRs would reduce
patient morbidity and mortality. Furthermore, pharmaceutical
developers would avoid heavily investing in drugs that ultimately
are too risky to use. Unfortunately, IADRs are generally
intractable to study and difficult to replicate in humans or
animal models. It is not clear why IADRs only affect some
individuals, or why the same drug can cause different IADRs in
different patients. However, a growing body of evidence suggests
that many IADRs are induced by a specific mechanism:
bioactivation, the focus of this study (Figure 1).
In bioactivation, enzymes convert drugs into electrophilically

reactive metabolites that covalently bind to nucleophilic sites
within biological macromolecules, including DNA and (off-
target) proteins. Metabolite-DNA adducts may be mutagenic or
even carcinogenic,19,37,38 and metabolite-protein adducts can
disrupt protein function or trigger toxic immune responses.39−41

In fact, many IADRs have been linked to overzealous
autoimmune attacks set off by the production and covalent
binding of reactive metabolites. Due to the threat conferred by
bioactivation, drug developers strive to avoid advancing
candidates that produce reactive metabolites, in order to reduce
the risk of investing in IADR-causing drugs.
Screening assays for reactive metabolites are often used but

have some limitations. Reactive metabolite trapping studies42

and covalent binding studies43,44 are commonly used techniques
to detect and understand bioactivation. Trapping studies detect
if conjugates have formed and can be used to characterize
reactive metabolite structure. Typically, a trapping agent, e.g.,
the use of glutathione (GSH) or cyanide as proxies for protein
and DNA, that has a high likelihood of conjugating to reactive

metabolites is selected.45 Formation of a GSH conjugate
indicates the presence of a reactive metabolite, and the GSH
conjugate can be detected via mass spectrometry.42 On the other
hand, covalent binding studies are able to quantify the extent of
conjugation through the use of a radiolabeled drug.46 In general,
screening assays may not accurately reflect endogenous
metabolism, consume time and resources, and require physical
synthesis of each compound under consideration.
Instead, computational models have the potential to rapidly

screen possible structures for bioactivation risk, thereby flagging
problematic molecules or providing a short list of molecules for
experimental validation. A widely used and simple method for
identifying problematic structures is to cross-reference a drug
candidate to a list of structural alerts.32 Usually, structural alerts
contain substructures that have known bioactivation mecha-
nisms that contribute to documented toxicity risk. However,
structural alerts have limited utility−they are not sufficient to
declare a molecule as toxic, and they can misclassify toxic
molecules as safe. Since structural alerts are determined
retrospectively, they have no predictive power for new and
understudied motifs.47 However, there is a lack of more complex
models that can generalize to understudied cases and account for
contextual nuances of drug metabolism.
In this study, we build a model that jointly models metabolism

and reactivity, thereby producing bioactivation predictions. We
model four types of metabolism that often produce reactive
metabolites: quinone formation, nitroaromatic reduction,
thiophene sulfur-oxidation, and epoxidation (Figure 1). These
pathways are chosen because we have well-developedmodels for
these metabolic routes, including an accurate model of quinone
formation,48 epoxidation,49 and a phase I metabolism model
that includes predictions for nitroaromatic reduction and

Figure 1. This study models four common bioactivation pathways: quinone formation, nitroaromatic reduction, thiophene sulfur-oxidation, and
epoxidation. Top row, lumiracoxib, a cyclooxygenase-2 selective inhibitor, was withdrawn from several countries after several cases of severe liver
damage.27,28 This toxicity was traced to the formation of a reactive quinone-imine metabolite that conjugates to off-target proteins, inducing
deleterious immune responses.27,28 Second row, nitrofurantoin, an antibiotic, carries a risk of acute liver failure,29 which is thought to be caused by
reduction of nitrofurantoin’s nitroaromatic group to a reactive nitroso.30 Third row, zileuton, a 5-lipoxygenase inhibitor used to treat asthma, has been
restricted in its use due to rare cases of severe hepatotoxicity, which has been traced to oxidation of the sulfur in its thiophene motif, producing a highly
reactive sulfur-oxide.31 Bottom row, furosemide, a diuretic, confers a risk of idiosyncratic hepatitis due to production of a reactive epoxide
metabolite.32−36
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thiophene sulfur-oxidation.50 Since the reaction type is
accounted for during prediction, we can infer the structure of
the resultant product using a structure inference model.51 Next,
to each inferred structure we apply a previously developed
model for predicting reactivity to protein or GSH. Once we have
predictions regarding metabolism of the input molecule and
reactivity of its inferred metabolites, we can use these
predictions to train a deep neural network that will predict
bioactivation at both the molecule- and pathway-level.
Molecule-level bioactivation aims to predict whether the input
molecule will undergo bioactivation, while pathway-level
bioactivation aims to predict which of the metabolic trans-
formations and inferred structures will lead to bioactivation.

■ METHODS
Bioactivation Training Data. We assemble a heterogeneous data

set of bioactivation reactions from the literature-derived Accelrys
Metabolite Database (AMD). Each reaction takes place in humans,
human cells, or human liver microsomes. Four types of metabolic
transformations are extracted: quinone formation, epoxidation, nitro-
aromatic reduction, and thiophene sulfur-oxidation. Each of these
metabolic transformations are well-known bioactivation mechanisms,
and in previous work, we built models that predict whether molecules
will be subject to each type of metabolism. Quinone formation48 and
epoxidation49 were modeled independently, and nitroaromatic
reduction and thiophene sulfur-oxidation were included in a model of
diverse phase I reactions.50

In total, we extract from the experimental data 210 quinone
formations, 174 epoxidations, 4 nitroaromatic reductions, and 15
thiophene sulfur-oxidations. For each parent molecule, we enumerate
all possible metabolites for each of these four pathways, producing 7580
quinone formations, 6100 epoxidations, 48 nitroaromatic reductions,
and 15 thiophene sulfur-oxidations. We then select for bioactivated
parent molecules by taking the set of reactions for each of the four types
of metabolic transformations and retaining those parent molecules
whose possible metabolites are known to directly conjugate to protein
or glutathione (GSH). The bioactivated parent molecule’s metabolic
transformation and resultant, conjugating metabolite are labeled as an
experimentally observed bioactivation pathway. However, the same
parent molecule can be present multiple times if it is indicated with
multiple possible, experimentally observed bioactivation pathways. To
handle this case, we merge all duplicate parent molecules into a single
representation per unique parent molecule, with all of its experimentally
observed bioactivation pathways labeled.
In contrast with an experimentally observed bioactivation pathway, a

parent molecule might undergo one of the foir studied metabolic
transformations, but the resultant metabolite is not known to conjugate
to protein or GSH. Cases where a bioactivated parent molecule only
contains bioactivation pathways would not be a good test of the model’s
ability to predict the correct pathway within the bioactivated parent
molecules. Instead, we want the model to clearly distinguish between
pathways that are experimentally observed to bioactivate and pathways
that are experimentally unobserved to bioactivate. As a final step, we
filter out any molecules that did not have at least one experimentally
unobserved bioactivation pathway. This procedure produces a total of
332 bioactivated training molecules.
We also select molecules not experimentally observed to be

bioactivated. In this case, we are referring to all molecules that could
potentially undergo at least one of the four metabolic transformations
being studied that precede reactive metabolite formation, but whose
resultant metabolites are not experimentally observed to conjugate to
protein or GSH. To select these molecules, we start with the same set of
reactions from the AMD. Next, we filter out all molecules that are
intrinsically reactive: those that are known to directly conjugate to
protein or GSH. Additionally, we remove all molecules that belong to
the set of bioactivated molecules. Finally, we select all molecules with at
least one possible bioactivation pathway among the four metabolic

transformations considered in this study. This procedure produces a
large pool of 30690 negative molecules.

From the pool of negative molecules, we randomly select 332
moleculesequivalent to the total number of bioactivated mole-
culesto form a final data set of 664 molecules. The remaining
negative molecules are randomly batched into external test sets, each
consisting of 332 molecules, with the same proportion of molecules
representing each pathway as the negative molecules from the training
set. None of these molecules are considered during training. Instead,
they represent additional tests for the final trained model to evaluate
how well the model generalizes to unseen cases.

Under the AMD licensing agreement, we are not able to share the
exact chemical structures of the product metabolites and their
corresponding reactions used in the data set. However, we provide all
reaction and molecule AMD registry numbers, as well as the parent
molecule structures, in the Supporting Information, which is enough
information to reconstruct the data set and replicate our results.

DrugBank.DrugBank is used as another source of external data and
was downloaded from www.drugbank.ca (accessed 2020-07-03). We
later use the DrugBank external data set during evaluation of the final
bioactivation model’s ability to generate hypotheses for the toxicity
drivers of withdrawn drugs. To identify withdrawn, small-molecule
drugs, we filter entries designated by both the “small-molecule”
annotation and the “withdrawn” group. This release of DrugBank
includes the structures of 221 drugs. Prior to submission to the model,
we remove any drugs also present in our training data, resulting in a total
of 201 molecules. We provide all withdrawn drugs assessed by the
model and their structural information in the Supporting Information.

Bioactivation Descriptors. For this study, we synthesize several
previous models of metabolism and reactivity to design specific
bioactivation descriptors that are inputs to a neural network (Figure 2).

Using previously designed models for quinone formation,48 epox-
idation,49 nitroaromatic reduction, and thiophene sulfur-oxidation,50

formation scores are computed for each possible transformation for a
given input molecule. The formation score for each reaction type
represents the likelihood of the parent molecule undergoing the
respective metabolic transformation. Next, the actual structures of each
of these possible metabolites are generated using an in-house
metabolite structure predictor.51 After enumeration of the metabolite

Figure 2. Bioactivation descriptors were computed using site-level
metabolism predictions, metabolite structure predictions, and reactivity
predictions. Top, the predictions generated by a previously developed
epoxidation model49 are visualized on styrene. The colored shading
indicates site-level epoxidation scores, which reflect the probability that
an epoxide will form at each possible location within styrene. Bottom,
using a previously developedmetabolite structure generator,51 the exact
epoxide structure corresponding to the highest site-level epoxidation
score was generated. Next, we applied our previously published
reactivity model,52 which has proved useful in other studies as well,53,54

to predict the atom-level reactivity of both the substrate and the
metabolite. Finally, by tracking each atom’s reactivity score in the
metabolite from the corresponding atom in the substrate, we calculated
atom-level reactivity deltas. Metabolism renders the two carbon atoms
more reactive, with predictions increasing from 0.19 to 0.41 and from
0.56 to 0.73.
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structures, the atom-level reactivity scores with respect to both
glutathione (GSH) and protein are computed for both the substrate
and the product molecule.52 Next, the atom-level reactivity deltas
between the metabolite and substrate are calculated for both GSH and
protein by subtracting the atom’s reactivity prediction in the product
from the atom’s reactivity prediction in the substrate. Finally, a
bioactivation score is computed by multiplying the maximum atom-
level reactivity delta by the corresponding formation score.
In some cases, molecules being evaluated were present in the training

sets for the models used to generate the formation scores or atom-level
reactivity scores. To ensure unbiased evaluation of each molecule, we
use versions of the phase I metabolism models and reactivity models
that were retrained with all of the molecules in their original training
sets except for the molecule being evaluated. The predictions from the
newly trained models are then used to derive the bioactivation
descriptors. We also compute simple molecule descriptors, such as
molecular weight and the total number of atoms. Overall, we generate
20 descriptors for each possible metabolite, including 5 bioactivation
descriptors (Table S1) and 15 molecule descriptors (Table S2).
Combined Path- and Molecule-Level Bioactivation Model.

Descriptors are computed to create inputs for machine learning
algorithms, which findmappings between vectors of numbers, known as
features, and labeled examples, known as targets. In this context, the
descriptors that compose our features and our targets are a binary
column indicating whether a pathway was experimentally observed as a
bioactivation pathway in the AMD.

The bioactivation model’s architecture is representative of a
feedforward neural network, in which an input is passed into a layer
of fully connected neurons. Each neuron has a weight parameter
associated with each of its connections to the input or neurons in the
previous hidden layer. An affine combination is computed whereby the
weight parameter is multiplied by the input feature to a neuron and
adjusted by a learnable bias parameter. The affine combination is passed
into a nonlinear function, such as a sigmoid function or a rectified linear
unit (ReLU), and the neuron output is the input to each neuron in the
next hidden layer. The final layer aggregates the outputs of the previous
layer and results in a final model prediction. In comparison, a logistic
regressor computes an affine combination between the input features
and the model parameters, which is then fed into a sigmoid function
that squashes it in the range of 0 to 1. For both methods, a loss function
is used to compute the error between the model output and the true
label. The computed error is used to update the model’s parameters to
minimize the loss function.

The bioactivation model is a feedforward neural network, with 1
molecule layer, 1 input layer, 2 hidden layers, and 2 output layers
(Figure 3). The first output layer calculates pathway bioactivation
scores (PBSs or pathway score), and the second output layer computes
a single molecule bioactivation score (MBS or molecule score) for each
input molecule.

We trained this network in two stages. In the first stage, we trained
the pathway-level network to compute accurate PBS values. For a given
input molecule, each of its experimental or model-inferred pathways is

Figure 3. Structure of the bioactivation model. The diagram on the left demonstrates the flow of data through the model. The model consists of 1
molecule layer, 1 input layer, 2 hidden layers, and 2 output layers. First, several descriptors are calculated from an input molecule’s structure. Each
pathway has its own set of bioactivation descriptors, and these descriptors are submitted to the hidden layer, which computes pathway bioactivation
scores (PBSs or pathway score) for the input molecule and each of its pathways. Each pathway score ranges from zero to one, reflecting the probability
of a specific bioactivationmechanism at a specific site within the input molecule. For this study, we enumerated four types of metabolic transformations
that precede bioactivation, including all possible quinone formations, epoxidations, nitroaromatic reductions, and thiophene sulfur-oxidations. Next,
molecule descriptors and the top-five pathway scores are submitted to a second hidden layer, which computes a molecule bioactivation score (MBS or
molecule score) for the input molecule. Molecule scores also represent the probability of a molecule undergoing bioactivation by any of the pathways
considered and, like pathway scores, ranges from zero to one. A chemical structure is represented by the molecule node. The other circles are
probabilistic scores between 0 and 1. Blocks are vectors of real numbers. The stack of plates marked “Pathways” represents that the pathway-level
module is replicated across all possible metabolites and their corresponding pathways. On the right, site-level data are illustrated on the top (with sites
of predicted bioactivation circled), andmolecule-level data are illustrated on the bottom (with themolecules of predicted bioactivation circled).Model
output for two pairs of highly similar molecules are illustrated.
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considered as a possible bioactivation pathway. Each pathway is
represented by a vector containing the bioactivation descriptors that
define it. Thus, the data set passed into the pathway-level network is a
matrix with one column per bioactivation descriptor and one row per
pathway. Using the first hidden layer, the pathway-level network learns
an association between each pathway and its bioactivation descriptors
against a binary target vector where the experimentally observed
bioactivation pathways are labeled with a 1.
To train the model, we use gradient descent on the cross-entropy

error.55 In this procedure, the model’s weights are gradually adjusted to
assign high pathway scores for experimentally observed bioactivation
pathways and low pathway scores for all other pathways. Each pathway
score ranges from 0 to 1 and reflects the probability of a specific
bioactivation event at specific sites within a molecule, where each
pathway is represented by its five bioactivation descriptors. Effectively,
the pathway score predicts which pathway(s) will lead to bioactivation,
where a pathway consists of the input molecule, one of the four

metabolic transformations, and the structure and conjugation potential
of the resultant metabolite.

The described procedure can generate several different PBSs, which
may share some atoms in common if the different pathway’s involve
multiple metabolic transformations occurring at the same sites. For
example, the atoms that make up sites of aromatic epoxidation are often
themselves possible sites of quinone formation. This phenomenon can
make visualization of multiple PBSs, each of which designates a
prediction regarding a different bioactivation pathway, a difficult task.
To aid interpretability, we devised a method for visualizing PBSs for a
given input molecule (Figure 4). We first map all PBSs to the atom-
level. This is straightforward: for a quinone pair prediction, each atom
in the pair would be assigned the PBS. Similarly, both atoms of a bond
prediction (nitroaromatic reduction and epoxidation) would be
assigned the same PBS. This results in a vector of PBSs for each
atom in the molecule, where each vector entry represents the PBS for
each of the atom’s possible bioactivation pathways. Next, we compute

Figure 4. Visualization of pathway bioactivation is elusive because it requires consolidating multiple PBSs that can overlap at the same site.
Epoxidations and nitroaromatic reductions entail bond cleavage. However, quinones take place on atom pairs, and thiophene sulfur-oxidation occurs
on a single sulfur atom. Consequently, while each of these predictions types can be visualized on separate structures (Figure 1), this paradigm does not
make for easily understood predictions. Instead, we first map all PBSs to the atom level. This is straightforward: for a quinone pair prediction, each atom
in the pair would be assigned the initial score. Similarly, both atoms of a bond prediction (nitroaromatic reduction and epoxidation) would be assigned
the same initial score. While this mapping moves closer to an interpretable result, the same atom can still be subject to multiple possible bioactivation
pathways. For instance, the atoms making up sites of aromatic epoxidation are often themselves possible sites of quinone formation. Therefore, in the
last step prior to visualization, we compute the scores on each atom by using the probabilistic OR function across all predictions that included the
current atom under consideration. Top left, an example of the resulting, final visualization of pathway bioactivation. Top right and bottom, the
underlying metabolism and reactivity processes that constitute some of the possible bioactivation pathways extending from the visualized substrate.
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the final scores on each atom by using the probabilistic OR function
across the vector of predictions assigned to that atom.
In the second training stage, we trained the molecule-level output

layer to compute MBS values. Using the second hidden layer, the
molecule-level network learns an association between the 15 molecule
descriptors, the top-five pathway scores, and the input molecule’s
classification as being experimentally observed to bioactivate or not.
Each row of the input data matrix represents a molecule, and each
column represents either a molecule descriptor or one of the top-five
pathway scores. Similar to the first stage, the weights of the network are
trained using gradient descent on the cross-entropy error to assign
bioactivating molecules with higher molecule scores than those for
nonbioactivating molecules. Each molecule score reflects the
probability of the input molecule undergoing bioactivation by any of
the pathways considered and, like pathway scores, ranges from zero to
one.
To produce pathway and molecule scores for the entire data set, we

use a standard practice in machine learning for simulating performance
on external data: cross-validation. In this procedure, any metabolically
related molecules are withheld together, and themodel is trained on the
remaining data. Molecules were separated into metabolically related
clusters based on connections through metabolic reactions in the
AMD−each cluster was comprised of a molecule and all of its detected
parent and sibling molecules. Next, the trained model predicts the
pathway scores of the withheld molecules. In total, there are 569 groups
of related molecules, so the cross-validation procedure entails training
569 individual models. This process guarantees that each molecule’s
predictions are computed by a model that does not contain information
about that molecule or closely related molecules.

■ RESULTS AND DISCUSSION

The bioactivation model’s performance and capabilities are
investigated in the following sections. First, we focus on the
model’s pathway bioactivation scores (PBSs or pathway score).
Using several metrics, we quantify how well pathway scores
predict the correct pathway(s) within bioactivated molecules.
Next, we turn our attention to the model’s second output layer,
which produces molecule bioactivation scores (MBSs or
molecule score). Using similar methodologies as the pathway-
level analysis, wemeasure the performance of molecule scores by
several standards. Finally, we use the final bioactivationmodel to

enumerate hypotheses for the toxicity drivers of drugs with
currently unknown or poorly understood toxicity mechanisms.

Bioactivation Pathway Prediction Accuracy. For
bioactivated molecules, knowledge of their specific bioactivation
pathways yields potentially fundamental insights about their
possible toxicity mechanisms. Bioactivation takes place at
specific sites within molecules and forms specific reactive
metabolite structures. Knowledge of these sites and subsequent
reactive structures can potentially guide rational modifications
to prevent bioactivation while hopefully retaining a drug’s
pharmacological effect.
In the following experiments, we compare the neural

network’s performance on various metrics to that of a simpler
modela logistic regressortrained with identical inputs and
cross-validation folds. We also calculate the performance of each
descriptor by treating it as a model and simply using its raw
values as predictions. These comparisons indicate which
descriptors are informative, and whether anything is gained by
agglomerating several properties using the neural network or
logistic regressor. We use several metrics to assess each model’s
performance at predicting bioactivation pathways.
First, we compute the “top-two” performance, a commonly

used metric in site of metabolism prediction studies (Figure
5).49,56−59 This metric counts a molecule as accurately predicted
if any of its experimentally observed bioactivated pathways
receive the highest or second-highest PBS for the entire
molecule. The total number of correct predictions is divided
by the total number of bioactivated molecules and multiplied by
100 to produce the percentage of correct predictions.
Second, we compute the “average path AUC” for calculating

the area under the receiver operating characteristic curve (ROC
AUC) for each bioactivated molecule, followed by averaging
these AUCs. Recall that each bioactivated molecule has multiple
metabolites and pathways that were enumerated in the
construction of the bioactivation training data, and at least
one of the pathways is experimentally observed to bioactivate.
Note that a given bioactivated molecule can have multiple
pathways specific to one of the four metabolic transformations

Figure 5.Model produced accurate cross-validated bioactivation pathway predictions. Right, the top-twometric was computed across 332 bioactivated
molecules. The top-two metric reflects the percentage of correctly predicted molecules, where a correct prediction is defined as a molecule for which
any of its bioactivated pathways received the highest or second-highest score for all possible pathways within that molecule. Left, across the same set of
bioactivated molecules, the average path AUC was measured by calculating how often bioactivated pathways received higher scores than all other
possible pathways. For bothmetrics, the performances of the five bioactivation descriptors were reported, as well as the cross-validated scores produced
by training with either a neural network or a logistic regressor. Asterisks denote performances that were significantly worse than the highest-scoring
method, as determined by a paired t-test using Bonferonni’s correction.61 In this context, the paired instances are the bioactivated parent molecules and
the computed value of the average path AUC or top-twometric when the bioactivatedmolecule is processed by either the highest-scoringmodel or one
of the other individual models, whose performance is being compared against the highest-scoring model. The error bars represent 95% two-sided
confidence intervals.62
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or zero pathways specific to another type of metabolic
transformation. Due to the discrepancy in pathway type
representation within each bioactivated molecule, an appro-
priate multiclass metric is elusive because computing four ROC
curves for each bioactivated molecule (one for each pathway
type) results in undefined behavior where there is not a sufficient
number of either bioactivated or nonbioactivated classes for the
computation to make sense. Furthermore, we are more
concerned with predicting whether a molecule will be
bioactivated and, if so, which pathway leads to bioactivation−
no matter the exact mechanism. For this reason, the pathway-
level target vector is binary and not multiclass. Thus, we
compute a single, binary-class ROC curve for each bioactivated
molecule using binary labels for each of the molecule’s pathways
(whether the pathway has been experimentally observed to
bioactivate or not) and the pathway-level predictions generated
by the model. Finally, we compute the AUC for each of these
ROC curves and aggregate them via an ordinary arithmetic
mean to yield the average path AUC performance. The average
path AUC is more sensitive than the top-two metric, because it
considers the relative ranking of all pathways within each
molecule, and we have often used variations of it in past
work.48,49,52,60

However, five methods have average path AUC performances
that are statistically equivalent by paired t-tests corrected for
multiple comparison via Bonferroni’s correction.61 The neural
network, the protein bioactivation score, the formation score,
the GSH bioactivation score, and a logistic regressor had
equivalent average path AUCs of 89.98%, 89.62%, 89.38%,
88.50%, and 88.10%, respectively. The top-two performances
are slightly more informative, but nevertheless four of the five
previously tied methods are also equivalent, with the formation
score, the neural network, the logistic regressor, and the protein
bioactivation score, having statistically comparable top-two
performances of 78.01%, 78.01%, 77.11%, and 76.20%,

respectively. Only the GSH bioactivation score can be judged
inferior, with its 68.07% top-two performance having a p-value of
0.002 when compared to the predictions of the top-scoring
method using paired t-tests corrected for multiple comparison
via Bonferroni’s correction.61

To further evaluate the four methods with equivalent average
path AUCs and top-two performances, we compute a third
metric, the global pathway AUC (Figure 6). Unlike the previous
metrics, this measure does not consider molecule identity and
instead computes the AUC of a single, binary-class ROC curve
across all possible bioactivation pathways within bioactivated
molecules. However, the same five methods that had equivalent
average path AUCs also had equivalent global pathway AUCs,
with the formation score, the neural network, the protein
bioactivation score, the GSHbioactivation score, and the logistic
regressor performing at 91.41%, 90.92%, 90.51%, 90.10%, and
89.41%, respectively.
Unlike the average pathway AUC, we can compute a

multiclass variant of the global pathway AUC and evaluate the
pathway-level models for each metabolic transformation being
studied. For this measure, we compute the AUC of four
individual ROC curves−one for each metabolic transformation.
The target vector is still binary−1 if bioactivated and 0 if not−
and we use the term multiclass in this setting to refer to a global
pathway AUC analysis on separate subsets of the pathway data
that have been stratified across the four pathway types. Each
ROC curve is created based on its metabolic transformation’s
possible bioactivation pathways within the set of bioactivated
molecules, which are annotated based on whether the pathway
has been experimentally observed to bioactivate or not, and the
model-predicted pathway scores. Each molecule does not
contribute just its maximum scored pathway to the global
AUC calculation for a given metabolic transformation but
instead contributes all the scored pathways and their possible
metabolites. Each AUC, which is measured for one of the four

Figure 6. Binary-class global pathway AUC was computed for several methods across all bioactivated molecules. Asterisks denote performances that
were statistically significantly worse than the highest-scoring method, using a false positive rate paired t-test.61 In this context, the paired instances are
the experimental or model-inferred pathways and their computed PBS when the pathway is processed by either the highest-scoringmodel or one of the
other individual models, whose global pathway AUC performance is being compared against the highest-scoring model. The error bars represent 95%
two-sided confidence intervals computed using the method specified in Cortes and Mohri, which requires the error rate and the numbers of positive
and negative samples.62 With respect to each model’s ROC curve, the threshold for optimal binarization is calculated and applied to classify each
sample, from which the error rate can be computed.
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pathway types, is weighted by the prevalence of its
corresponding pathway type in the pathway-level training set.
For example, the weight of the AUC for the ROC curve specific
to quinone forming pathways is 7,580 divided by 13,743. The
multiclass AUC is then given by the sum of the four weighted
AUCs.63

The pathway-level multiclass global pathway AUC for each
model is reported in Table 1, along with each pathway type’s
individual global pathway AUC. The same five methods that had
equivalent binary-class global pathway AUCs also had

equivalent multiclass global pathway AUCs, with the formation
score, the neural network, the protein bioactivation score, the
GSH bioactivation score, and the logistic regressor performing
at 91.2%, 90.8%, 90.3%, 90.3%, and 89.2%, respectively. For each
model, pathway performance was highest for both the
epoxidation and quinone formation pathway types. In contrast,
the pathway types for nitroaromatic reduction and thiophene S-
oxidation had a lower, more varied performance. Both the
nitroaromatic reduction and thiophene S-oxidation pathway
types are much less frequently observed than the epoxidation

Table 1. Each Pathway-Level Model’s Separate AUC Performance for Each of the Four Metabolic Transformations and Their
Aggregate Multiclass AUC Performance

model epoxidation nitroaromatic reduction quinone formation thiophene S-oxidation multiclass global pathway AUC

formation score 92.8% 65.2% 90.1% 71.4% 91.2%
neural network 92.1% 65.9% 89.9% 64.3% 90.8%
protein bioactivation score 91.6% 73.2% 89.5% 42.3% 90.3%
GSH bioactivation score 91.5% 88.9% 89.3% 85.7% 90.3%
logistic regressor 90.5% 64.4% 88.4% 59.0% 89.2%
protein atom reactivity delta 70.4% 70.4% 56.2% 0.07% 62.5%
GSH atom reactivity delta 63.4% 89.2% 46.6% 42.6% 54.2%

Figure 7.Of all methods, the neural network computed the most well-scaled predictions of bioactivation pathways, with predictions that were highly
probabilistic. The bar graphs plot the normalized distributions for each method across 388 pathways within 332 bioactivated molecules. The solid lines
plot in each bin the percentage of bioactivated pathways among all pathways in the corresponding score, denoted on the X-axis. The diagonal dashed
lines indicate the ideal perfectly scale prediction. The neural network produced the best scaled prediction of all methods, indicated by the highest
correlation to the best fit-line, and the lowest RMSE compared to a perfectly scaled prediction.
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and quinone formation pathway types in the bioactivation
training set, and the disparity in pathway type-specific results
may be driven by the disparity in available data.
Ultimately, we place more emphasis on average pathway AUC

because it more closely approximates the expected use of the
pathway-level model. When inputting a test molecule to see
which potential pathways and metabolites may result in
bioactivation, a user is likely interested in whether the model
correctly identifies the correct pathway(s) of bioactivation,
relative to all other pathways inferred by the model. Average
pathway AUC reflects this consideration.
It is intriguing that three of the bioactivation descriptors

perform so well compared to training the logistic regressor or
neural network. These performances are calculated simply by
treating a descriptor as a model prediction, without any training.
In previous studies, we have frequently compared our results to
individual descriptors, and we have always found that machine
learning outperforms the naive descriptor approach.48,49,52,60

This is as we would expect, due to the greater flexibility of the
machine learning approaches, which by design simultaneously
consider many different chemical attributes.
One explanation for the above phenomenon is that, in the

previous studies, the individual descriptors that were out-
performed were either topological or quantum descriptors
describing a basic feature of the molecule or its atoms. In this
study, the three individual descriptors that perform nearly as well
as the model are derived from the outputs of the previously
trained site of metabolism or reactivity models. These
bioactivation descriptors represent information learned by the
previously trained models and may encode more information
regarding bioactivation, and metabolic processes in general,
compared to the more naive descriptors referenced in prior
work. A broader comparison of global pathway AUC is made
between several individual topological descriptors against the
neural network, logistic regressor, and the top-three bioactiva-
tion descriptors (Figure S1). In this comparison, the individual
topological descriptors all perform significantly worse, as
expected and in keeping consistent with prior work.
Additionally, it is noteworthy that the two bioactivation

descriptors with much less predictive value are the two reactivity
deltas. This suggests that, for this study’s data set, merely
calculating the max reactivity delta of a potential product is not

very informative for predicting bioactivation, because that
metabolite may be very unlikely to occur. All three descriptors
that match the model performances include information about
the likelihood of the metabolic transformation: the formation
score (which is just a prediction of metabolism and does not
consider reactivity) and both “bioactivation scores”, computed
by multiplying the maximum atom reactivity increase by the
formation score. Based on these observations, we infer that, for
our data set, metabolism seems to be more important to evaluate
than reactivity for predicting bioactivation. In future work, by
expanding the model to include additional bioactivation
pathways that produce metabolites with more diverse reactivity,
we might observe an increased relevance of the reactivity
computations.
As a final evaluation of the various best-performing methods,

we compute reliability plots across all of the enumerated
pathways within the bioactivated molecules (Figure 7). In this
measure, the predictions of each method are distributed into ten
bins between 0 and 1, each of width 0.1. Next, we compute the
percentage of bioactivations in each bin and calculate the root-
mean-square error (RMSE) between each of these percentages
and the midpoint value of that bin. Lower RMSE values indicate
prediction methods that correlate better to probabilities, with a
perfectly scaled prediction having an RMSE of 0. To assess
performance, we also compute the R2 of the best fit line, which
has a maximum possible result of 1 for a model that produces
score bins that fit on a perfectly straight line.
Note that the RMSE and R2 metrics are dependent on the

binning strategy and can be sensitive to the concentration of data
points in each bin. To resolve this issue, we also compare each
method’s calibration performance using the Brier score, which
calculates the mean squared error between the model’s
predictions and the observed outcome. A lower Brier score
designates improved model calibration and is preferred.
With an RMSE of only 9.5% and a Brier score of 0.0197, the

neural network outperforms all other methods by both
measures. In comparison, the Brier scores for the logistic
regressor, the protein bioactivation score, and the formation
score are 0.022, 0.0230, and 0.0258, respectively. The logistic
regressor and the protein bioactivation score have much lower
R2 performances of 0.77 and 0.21, respectively. In contrast, the
formation score’s R2 of 0.95 almost equals the neural network’s

Figure 8. From top to bottom, left to right: ethacrynic acid,64 a diuretic, mianserin,65 an antidepressant, tolmetin,66 a nonsteroidal anti-inflammatory,
and imipramine,33,67 an antidepressant. For each drug, the experimentally observed site of metabolism is circled in black, and the observed reactive
metabolite is displayed. The magnitude of the PBS is indicated by the color shading gradient. Imipramine is known to produce two different reactive
metabolites: an epoxide and a quinone, both of which are predicted and visualized. Notice that imipramine’s plane of symmetry means that the highly
predicted sites on the other side of the molecule merely indicate the same quinone pathway.
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R2 of 0.95. Nevertheless, the formation score’s RMSE of 15%
indicates that it does not produce a probability as well-scaled as
the neural network, with its much lower 9.5% RMSE.
The neural network is the only method that produces both a

highR2 and a lowRMSE and Brier score, so we chose to use it for
the rest of the study. However, we certainly acknowledge that
valid arguments could also be made for choosing one of the
simpler methods instead. In addition, models with good
correlation but bad RMSE can still be useful in scenarios
where binarizing the prediction is applicable and where there is
flexibility in shifting the decision threshold for optimal
binarization. Ultimately, we chose the neural network’s scores
because we felt that their probabilistic nature might be helpful
for the next objective: predictingmolecule bioactivation. To give
an explicit example of the output given by the pathway-level
neural network model, four drugs are visualized with their cross-
validated PBS produced by the neural network (Figure 8).
Accuracy at PredictingMolecule Bioactivation.Given a

list of drugs or drug candidates, a useful bioactivation model

should accurately predict which structures will be bioactivated.
Flagging these potentially toxic molecules and separating them
from lower-risk compounds could enable problematic com-
pounds to be triaged for more rigorous testing, set aside if there
are acceptable alternatives, or rationally modified to prevent
bioactivation while retaining efficacy. To enable the bioactiva-
tion model to make these molecule-level bioactivation
predictions, we include in the training data molecules that are
not bioactivated, despite having structures capable of forming
quinones, epoxides, thiophene sulfur-oxides, or aromatic
nitrosos.
After the first stage of training, which produces accurate

pathway-level predictions, we perform a second training stage to
tune the model to distinguish between bioactivated and
nonbioactivated molecules. To assess performance at this
objective, we compute the “molecule AUC”: the AUC over all
molecules in the training data set. While all the previous AUC
values are based on the predictions of the pathway-level model,
the molecule-level AUC is based on the predictions of the

Figure 9.Molecule bioactivation scores (MBSs or molecule score) accurately identified bioactivated molecules. While all the previous AUC values are
based on the predictions of the pathway-level model, the molecule-level AUC is based on the predictions of the molecule-level model and only
considers the parent molecule and not the whole set of possible metabolites. Several methods are compared by their capacity to separate bioactivated
and nonbioactivated molecules. These methods include training a neural network or logistic regressor on the top-five pathway-level scores and all
molecule descriptors, using each molecule’s top pathway-level scores as molecule predictions, and using molecule descriptors as molecule predictions.
Based on false positive rate paired t-tests,61 results are denoted with an asterisk if their performance is significantly lower than the best-performing
method. In this context, the paired instances are the bioactivated or nonbioactivatedmolecules and their computedMBSs when processed by either the
highest-scoring model or one of the other individual models, whose molecule AUC performance is being compared against the highest-scoring model.
As a baseline comparison, an approach that uses structural alerts to filter molecules with at least one alert achieved a molecule AUC of 59.8%. The 35
structural alerts used for screening were derived from literature on minimizing idiosyncratic toxicity mediated by reactive metabolites.68 The error bars
represent 95% two-sided confidence intervals.62 Right, examples of bioactivated and nonbioactivatedmolecules are visualized. From left to right, top to
bottom: nefazodone (MBS: 0.74), lumiracoxib (MBS: 0.78), buspirone (MBS: 0.18), sertindole (MBS: 0.43). Each experimentally observed site of
bioactivation is circled. For each molecule, the colored shading represents PBSs, which range from 0 to 1.

Figure 10.Of all methods, the neural network produces the best-scaled, highly probabilistic molecule predictions. The bar graphs plot the normalized
distributions for each method across 388 pathways within 332 bioactivated molecules. The solid lines plot the percentage of bioactivated pathways
among all pathways that were assigned the corresponding score bin, denoted on the X-axis. The diagonal dashed lines indicate the ideal perfectly scaled
prediction. Of all three methods, the neural network has both the highest correlation to a best fit-line through respective binned percentages, indicated
by the R2 values, and the lowest RMSE compared to a perfectly scaled prediction.
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molecule-level model and only considers the parent molecule
and not the whole set of possible metabolites. Specifically, we
compute the AUC of a single ROC curve that is generated using
the labels for each molecule in the training set (whether that
molecule has been experimentally observed to bioactivate or
not) and the molecule-level predictions generated by the model.
We evaluate several models using this metric.
First, simply assigning each molecule its maximum cross-

validated pathway score is the most intuitive approach. This
highest pathway score method produces a molecule AUC of
80.23% (Figure 9). Alternatively, we perform a second training
step to tune the weights of an additional model layer to
distinguish bioactivated and nonbioactivated molecules. As
descriptors, we use eachmolecule’s top-five PBSs as well as all 15
molecule topological descriptors, for a total of 20 descriptors.
With these descriptors as input, we compare a logistic regressor
and a neural network with ten hidden nodes. The same cross-
validation folds are used as for the pathway-level training: each
group of similar molecules is withheld in turn, and a model is
trained on the remaining data, ensuring that training and testing
data is never mixed. The cross-validated scores produced by the
logistic regressor and the neural network havemolecule AUCs of
80.19% and 81.06%, respectively.
While molecule AUC fails to distinguish the highest pathway

score, the logistic regressor, and the neural network, reliability
plots indicate the best method: the neural network has both the
best RMSE (6.9%) and the best R2 (0.94) (Figure 10). In
contrast, the reliability performances of the highest pathway
score and the logistic regressor are, respectively, RMSEs of 8.4%
and 24% and R2 values of 0.90 and 0.90. Furthermore, the neural
network achieves the lowest Brier score of 0.168, compared to

Brier scores of 0.184 and 0.179 for the highest pathway score and
logistic regressor, respectively. The reliability plots also show
that the neural network does the best job of assigning high scores
to bioactivated molecules and low scores to nonbioactivated
molecules. Consequently, similar to our decision on the path-
level, we select the neural network for the final model structure,
while acknowledging that this is a somewhat subjective choice.
The final model is trained on the full bioactivation training data
set.
As external tests, we use ten of the previously discussed

batches of nonbioactivated molecules. Each batch includes 332
uniquemolecules not present in the training data. Using the final
trained model, we predict theMBS of each molecule within each
external test set. Next, for each test set, we measure the
separation between theMBS of the test molecules and the cross-
validated MBS of the bioactivated molecules.
Separation between the bioactivated molecules from the

training set and the nonbioactivated molecules from the external
sets could simply be due to a lack of calibration between the
cross-validated model predictions and the final trained model
predictions. Without additional positives being introduced via
the external test sets, further evidence is required to demonstrate
that the final trained model predictions do not need to be
adjusted to compensate for potential differences relative to the
cross-validatedmodel predictions. On the bioactivatedmolecule
training subset, we compare the cross-validated molecule
predictions against the fully trained model predictions (Figure
S5). As expected, there is an optimistic bias to the fully trained
model predictions, which can be seen when comparing the line
of best fit to the identity line. The optimistic bias results from the
fully trained model seeing each instance during training. Several

Figure 11. Top, examples of withdrawn drugs with high bioactivation predictions. We submitted the structures of 201 withdrawn drugs to the
bioactivation model, the majority of which were downloaded directly from DrugBank and supplemented by literature review. In order to generate
toxicity mechanism hypotheses for these drugs, we looked at molecules that received high molecule bioactivation scores yet have not been reported to
form reactive metabolites (to the best of our knowledge). From left to right: alclofenac71,72 (MBS: 0.75) and benzbromarone (MBS: 0.66). Bottom,
hypothesized toxicity drivers of withdrawn drugs. The bioactivation model predicts novel bioactivation mechanisms for several drugs. Three examples
are visualized with their metabolism predictions indicated by the colored shading on each parent drug structure, and the reactivity predictions are
similarly visualized on the structure of the hypothesized metabolite. From left to right, top to bottom: safrazine (MBS: 0.65), zimelidine (MBS: 0.66),
and astemizole (MBS: 0.69). For each pairing, the color shading gradient indicates PBS on the substrate and protein reactivity on the metabolite.
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notable outliers are present, most of which undergo observed
quinone formation. These outliers may have manifested due to
having moderate pathway-level scores that lead to greater
sensitivity in bias when alternating between the cross-validated
model and the fully trained model. The squared Pearson
correlation coefficient of 0.87 (p-value ≤0.001) denotes a high
correlation between the cross-validated model predictions and
the fully trained model’s predictions, which is evidence that the
fully trained model’s predictions are comparable to the cross-
validated model predictions.
Over the ten external test sets, the molecule AUC is 83.29%±

0.96%, equivalent to the accuracy of the MBS on the full cross-
validated training set of 81.06%. The model successfully
generalized to new data, assigning nonbioactivated molecules
it had never seen before with much lower scores than
bioactivated molecules.
Inferring the Toxicity Mechanism of Withdrawn

Drugs. To investigate the model’s utility, we explored its
applicability to withdrawn, small-molecule drugs. Ideally, the
model will be able to generate hypotheses regarding the
underlying toxicity of the withdrawn drugs. After downloading a
list of withdrawn drugs from DrugBank and removing any
molecules found in our training data, we used the bioactivation
model to enumerate hypotheses for the toxicity drivers of the
withdrawn drugs. Each of these 201 molecules were submitted
to our final trained model, thereby producing a molecule score
for each molecule. Molecule-level bioactivation scores for each
withdrawn drug are made available in Table S3.
The model outputs probabilistic molecule scores, but for the

purposes of estimating the total number of bioactivated
molecules within the list of withdrawn drugs, it was useful to
define an exact score to binarize predictions. To define this
cutoff, we analyzed the full ROC curve used to calculate the
molecule AUC across all training molecules (Figure S2). While
several methods for defining this cutoff are possible, in this
study, we computed the cutoff that optimizes both sensitivity
and specificity.69 This analysis resulted in an MBS threshold of
0.57. Using this threshold, we predicted that among the data set
of withdrawn drugs, 33 are bioactivated.
Upon investigation, we find that some of these predictions are

consistent with previously reported experimental results that
were not present in our training data (Figure 11, top). For
example, alclofenac, a nonsteroidal anti-inflammatory drug, was
introduced to the U.K. in 1972 but withdrawn in 197970 due to
several incidences of hepatotoxicity and skin rashes.71 Later, it
was determined that an epoxidation reaction takes place at
alclofenac’s terminal olefin.72 Furthermore, this epoxide
metabolite directly conjugates to sulfhydryl nucleophiles73,74

and consequently is a likely driver of alclofenac’s adverse effects.
Indeed, the bioactivation model predicts this epoxidation and
assigns alclofenac a very high probability of bioactivation with an
MBS of 0.75.
The bioactivation model also agrees with the experimental

findings for the gout drug benzbromarone, withdrawn from
Europe in 200475 due to cases of severe hepatotoxicity.76−78 At
the time, the mechanism of this toxicity was unclear. Later,
experiments with human liver microsomes produced gluta-
thione-conjugated metabolites, believed to be adducts of a
reactive ortho-quinone.79 This reactive metabolite could be the
driver of the benzbromarone’s idiosyncratic reactions. Surpris-
ingly, the bioactivation model similarly predicts quinone
formation at this ring, although it scores formation of a para-
quinone as more likely than formation of the ortho-quinone. It is

not clear whether the human liver microsomes had the
resolution to distinguish ortho- and para-quinones, so it seems
that the bioactivationmodel’s hypothesis essentially matches the
experimentally observed reactive metabolite.
In the cases of alclofenac and benzbromarone, the

bioactivation model reiterates toxicity mechanisms that have
already been reported. These results are examples of the model
successfully generalizing beyond its training data since these
structures were not included at any training phase. Additionally,
the agreement between experiment results and the computa-
tional modeling bolsters confidence that predictions of novel
toxicity mechanisms for less well-understood drugs be
experimentally validated in the future.
In other cases, the model’s predictions represent new

hypotheses for the mechanism’s of a drug’s toxicity (Figure
11, bottom). For example, the antidepressant safrazine, a
monoamine oxidase inhibitor, was withdrawn due to hepatotox-
icity80 and has also been associated with neuropathy.81 The
model assigned safrazine an MBS of 0.65, above the threshold
defined by the optimal point on the ROC curve of cross-
validated scores. To the best of our knowledge, a toxicity
mechanism has not been proposed for this abandoned drug.
From the structural alert’s perspective, one motif of concern
might be safrazine’s terminal hydrazine, a well-known structural
alert.32 However, the model does not predict a bioactivation
pathway extending from the terminal hydrazine, which may be
because activation of this structural alert was not one of the
bioactivation pathways modeled in this study. Instead, the
model predicts a bioactivation pathway on a different structural
alert of safrazine: a 1,3-benzdioxole motif leading to a reactive
quinone. Without experiments, it is difficult to say which
bioactivation pathway is more likely, but understanding the
toxicity of this drug could inspire a rational modification to
improve its safety profile.
The bioactivation model also provides a new hypothesis for

zimelidine’s toxicity mechanism. Zimelidine was an antidepres-
sant introduced to the U.K. market in 1982, only to be
withdrawn in 198370 because of several reports of idiosyncratic
neuropathy, includingGuillain Barre ́ syndrome.82,83 Later, it was
proposed84 that these adverse affects were due to a bioactivation
mechanism beginning with oxidation of zimelidine’s aliphatic
nitrogen’s, ultimately producing both a reactive nitrone85

metabolite and a reactive acrylaldehyde metabolite, which
have both been identified in human urine.86 The bioactivation
model presents an alternative hypotheses: direct epoxidation of
zimelidine’s heterocyclic ring. This hypothesized reactive
metaboliteformed in a single stepcould form in higher
quantities than the other reactive metabolites, which take at least
three steps to form.
Finally, astemizole, an antihistamine, was approved in 1988 by

the FDA. However, due to cardiotoxicity,87 Johnson and
Johnson chose to withdraw the drug globally in 1999.88 As far
as we can tell, the source of this cardiotoxicity was never
discovered. While astemizole is not known to produce reactive
metabolites, our model hypothesizes formation of a reactive
quinone metabolite following a double hydroxylation. Further
reinforcing the model’s predictions, the main biotransformation
pathways of emedastine, a structurally similar molecule to
astemizole, are mediated by aromatic hydroxylations at the same
proposed positions on its benzimidazole ring.89

To contextualize the bioactivation predictions on the
discussed withdrawn drugs, we evaluated their Tanimoto
similarity against the training data set on ECFP6-derived
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fingerprints. Neither alclofenac, benzbromarone, safrazine,
zimelidine, nor astemizole had a Tanimoto similarity greater
than 0.5 with any of the training set molecules. Figure S3
displays the Tanimoto similarity distribution between each of
the discussed DrugBank withdrawn drugs and the training set
instances.
As seen for safrazine, zimelidine, and astemizole, the model

can unearth explicit, testable hypotheses about the contexts and
mechanisms that drive a molecule’s incidence of toxicity.
Further experimental validation of these bioactivation pre-
dictions is necessary and a possible next step in future work but is
outside of the scope of this study.
Lastly, it is worthwhile to point out cases in which the model

yields potential false negatives with respect to the literature.
Twelve of the withdrawn drugs had an MBS below the
bioactivation threshold but were annotated as being observed
to undergo bioactivation according to the AMD. Of these 12, we
found corresponding literature for six that referenced potential
bioactivation via the four pathways studiedzomepirac90

(MBS: 0.42), nimesulide91 (MBS: 0.40), thioridazine92 (MBS:
0.36), troglitazone93 (MBS: 0.22), phenacetin94 (MBS: 0.15),
and thalidomide95 (MBS: 0.07). Figure S4 displays the
Tanimoto similarity distribution between each of the six false
negatives and the training set instances. For the remaining six
drugs, their withdrawal is associated with other causes, such as
drug−drug interactions or formation of alternate reactive
metabolites than those within the scope of this study. Identifying
and addressing themodel’s limitationsmay aid in resolving these
false negatives or better understanding why they occur.

■ MODEL LIMITATIONS
One limitation of the current model is that there are other
bioactivation pathways beyond those included in this study.
However, the approach demonstrated here is easily extendable
to additional pathways by providing training data for those
pathways and models for specific reactions of interest. For
instance, the phase I metabolism model used for prediction of
nitroaromatic reduction and sulfur oxidation also supports
epoxidation and provides coverage of 92.3% of AMD phase I
reactions,50 and the structure inference model supports the
phase I metabolism model’s rule set coverage as well.51 Another
shortcoming is that we only considered one-step bioactivations,
where a metabolic reaction produced a metabolite that
conjugated to macromolecules. Going forward, by expanding
the metabolism scores to included multiple steps, we plan to
extend the ability of the model to pick up multistep
bioactivations.
Additionally, the current modeling approach has some

inherent limitations due to its reliance on a database of
literature-derived reactions. For example, we label molecules as
not bioactivated based on a lack of evidence in the database.
However, the aphorism “absence of evidence is not evidence of
absence” is certainly worth remembering, and we view our
labeling paradigm more as a necessary assumption than an ideal
data set, due to the paucity of alternatives. This caveat is
reflected in the lower performance of the molecule-level scores
compared to the pathway-level scores. Another data limitation is
with respect to understudied or less common pathways, as seen
in the model’s worse performance when evaluating potential
bioactivation pathways involving nitroaromatic reduction or
thiophene sulfur-oxidation compared to those involving
quinone formation or epoxidation. Hopefully, future exper-
imental work will yield higher-quality data sets that include both

bioactivated and nonbioactivated molecules, with both catego-
ries tested by the same assays. Furthermore, the current
approach is reliant on several underlying models of metabolism
and reactivity. Updates to any of the underlying models will
influence the values of the calculated bioactivation descriptors
and, as a result, require retraining the bioactivation model.
In the current work, the max atom-level reactivity delta

features had less relevance than the formation scores in
predicting PBSs and MBSs. This could be a result of the types
of reactivity present in the data set, but it could also be a result of
how the reactivity is used. Future work could expand upon more
complex feature engineering of reactivity. For example, a
product metabolite can result in a large max atom-level reactivity
delta without having a high reactivity. Potential avenues of
experimentation include altering the type of aggregation
function used, e.g., an average function instead of a max
function, and the incorporation of reactivity delta features with a
feature for the absolute value of the product’s reactivity.
Finally, not all reactive metabolites are toxic. Sometimes,

detoxification pathways such as glutathionation are able to
effectively clear reactive metabolites before they cause
deleterious effects. Other complex phenomenon that influence
the likelihood of an adverse event include route of
administration, coadministered medications, comorbidities,
and genetic variants. We ultimately envision a broader toxicity
model, where bioactivation predictions are combined with other
important factors, like daily dose and rate of reaction, in order to
build a model that explicitly predicts the toxicity risk of a certain
molecule.

■ CONCLUSION
Bioactivation entails two distinct concepts: metabolism and
reactivity. Metabolism gives rise to electrophilic structures
reactive metabolitesthat then conjugate to nucleophilic sites
within biological macromolecules, such as proteins. Protein-
metabolite adducts can incite toxic immune responses, the
driving force for many idiosyncratic adverse drug reactions. This
study constructs a novel, sophisticated bioactivation model by
synthesizing several previous studies of both metabolism48−51

and reactivity.52,60 Four types of metabolism are included:
quinone formation, epoxidation, thiophene sulfur-oxidation,
and nitroaromatic reduction, some of the most common
reactions that form reactive products. To predict bioactivation,
the model first predicts the chances of any of these metabolic
events occurring at all possible sites within a given input
molecule. Next, the model enumerates the exact structures of
those metabolites. These structures are assigned scores
reflecting their chances of conjugating to protein or GSH.
Finally, using these metabolism and reactivity scores as input, a
feedforward neural network predicts bioactivation on both the
pathway- and molecule-level.
Across 332 bioactivated molecules extracted from the

literature, the model predicts the exact bioactivation pathway
with 89.98% AUC. These pathway-level bioactivation predic-
tions make a specific hypothesis about the mechanism of a
molecule’s toxicity. Furthermore, with 81.06% AUC the model
separates bioactivated and nonbioactivated molecules. Mole-
cule-level bioactivation predictions can be used to rapidly screen
a large number of molecules for the key toxicity risk of
bioactivation. To demonstrate, we use the bioactivation model
to generate hypotheses for the toxicity drivers of several
withdrawn drugs associated with idiosyncratic reactions with
currently unknown etiology. By adding metabolism models for
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additional bioactivation pathways, future work will easily expand
the utility of the bioactivation model. Nevertheless, this study
makes a major step forward toward a fully comprehensive model
of metabolism and reactivity.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00417.

“AMD_Registry_Numbers.csv” file, reaction registry
numbers, molecule registry numbers, and a binary column
that indicates bioactivation; “withdrawn_structures.sdf”
file, withdrawn drugs assessed by model and information
regarding their chemical structures, including but not
limited to SMILES, INCHI identifier and key, Formula,
DrugBank ID, Generic Name, and Synonyms; and
“training_set_parents.sdf” file, parent molecule structures
used in training data set (ZIP)
Additional content on molecule-level bioactivation scores
for all withdrawn drugs in data set, global pathway AUC
comparison with topological descriptors, and molecule-
level neural network AUC with extraction of optimal
molecule-level score threshold and full listing of
bioactivation and topological descriptors in Tables S1
and S2, respectively (PDF)
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