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Abstract—Datasets in critical domains are often class imbal-
anced, with a minority class far rarer than the majority class,
and classification models face challenges to produce calibrated
predictions on these datasets. A common approach to address
this issue is to train classification models in the first step and
subsequently use post-processing parametric or non-parametric
calibration techniques to re-scale the model’s outputs in the
second step without tuning any underlying parameters in the
model to improve calibration. In this study, we have shown that
these common approaches are vulnerable to class imbalanced
data, often producing unstable results that do not jointly optimize
classification or calibration performance. We have introduced
Cal-Net, a “self-calibrating” neural network architecture that
simultaneously optimizes classification and calibration perfor-
mances for class imbalanced datasets in a single training phase,
thereby eliminating the need for any post-processing procedure
for confidence calibration. Empirical results have shown that
Cal-Net outperforms far more complex neural networks and
post-processing calibration techniques in both classification and
calibration performances on four synthetic and four benchmark
class imbalanced binary classification datasets. Furthermore,
Cal-Net can readily be extended to more complicated learning
tasks, online learning and can be incorporated in more complex
architectures as the final state.

I. INTRODUCTION

Advances in deep learning [1] encouraged the use of neural

networks in several domains, including medicine and health-

care [2]. They are increasingly playing a critical role in

decision-making processes. In these settings, neural networks

must not only be accurate in their predictions, but should also

be calibrated to output well-scaled probabilities. Predictions

from a binary classifier are said to be well-calibrated if the

outcomes predicted to occur with a probability p occur p

fraction of the time. Figure 1 exhibits a hypothetical example

of the calibration performance of a classifier on an imbalanced

dataset (solid line) using reliability plots alongside the ideal

calibration curve (dotted line) [3]. The closer the calibration

curve of a classifier corresponds to the ideal calibration curve,

the better is its calibration performance. However, datasets in

critical domains can be highly imbalanced, with one class far

less common than the other. Little work has been done to

develop well-calibrated models on imbalanced datasets [4].

A classifier minimizes error during training, but most error

functions assign equal weights to all instances which lead to

the total error function being dominated by the performance

on the majority class. To combat this, error functions assign

higher costs on misclassifications for the minority class than

the majority class, thereby aiming to maximize classification

performance but often overlooking calibration performance.

Furthermore, common parametric and non-parametric cali-

bration approaches are often unstable on class imbalanced

datasets [5]. Calibrated predictions are crucial in establishing

trust and driving adoption of neural network-based classifiers

on class imbalanced datasets in critical systems.

Fig. 1. Reliability plot (bins=10) showing a calibration curve of predicting
positive events in an imbalanced dataset for a classifier. The solid line
represents the performance of a classifier whereas the dotted line represents the
ideal calibration curve. The x-axis or “confidence” is the average prediction of
each bin, the primary y-axis or “fraction positives” is the fraction of minority
(positive) samples in each bin and the secondary y-axis or “density” is the
histogram density that shows the distribution of predictions for the classes.

Very little work has been done in exploring the possibility

of addressing confidence calibration and class imbalance using

neural network architectures [6]. In this work, we introduce

Cal-Net, a neural network architecture and associated loss

functions that simultaneously optimize classification and cali-

bration performances on class imbalanced datasets. Empirical

results have shown that Cal-Net achieves the best classification

and confidence calibration performances across four simulated

and four real world datasets across a diverse range of class

imbalance.
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II. RELATED WORKS

There are several approaches to address class imbalance

during training and several procedures to calibrate model

outputs after training. However, to the best of our knowledge,

there is no published approach that simultaneously addresses

class imbalance and calibration during training.

Methods for handling class imbalance are well established

in the literature and include sampling strategies and cost-

sensitive learning. Examples of sampling strategies include

oversampling [7], which re-samples the minority class at

random to match the distribution of the majority class and un-

dersampling [8], which eliminates samples from the majority

class at random to match the distribution of the minority class.

Even though sampling strategies are easily implemented, over-

sampling can cause overfitting [9] and random undersampling

can cause information loss [10]. Furthermore, undersampling

one class modifies the priors of the training set and conse-

quently biases the calibration of the final model [11]. Syn-

thetic minority oversampling technique (SMOTE) [12] shows

improvements over random oversampling by creating synthetic

minority class samples but it still suffers from high variance

[13]. Cost-sensitive learning addresses class imbalance via

constructing an objective function that assigns different costs

to the error for each class [14], [15]. Sample weighting [16]

assigns high weights to samples from the minority class that

can be incorporated in the entropy calculation for classifiers.

In neural networks, class imbalance is usually handled using

sampling strategies or cost-sensitive learning or a combination

of both techniques.
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Fig. 2. Variants of the Cal-Net architecture with primary output Y and
secondary output Y ′, both drawing from hidden node H: (A) - Simple Cal-
Net with logistic function activated outputs and (B) - Cal-Net architecture
enforcing monotonicity between the two outputs.

There are several methods to improve the calibration perfor-

mance of models after training. For example, there are para-

metric approaches like Platt scaling [17] and non-parametric

approaches based on isotonic regression [18] and binning [19].

Platt scaling [17] applies a logistic transformation to calibrate

the outputs of a predictive model using a maximum likeli-

hood estimation framework. Confidence calibration, based on

isotonic regression [18], maps the outputs of predictive mod-

els using isotonic (monotonically increasing) transformations.

Histogram binning divides outputs of a classifier into several

bins and uses the fraction of positive samples in each bin

as the calibrated probability. Bayesian binning into quantiles

(BBQ) [20] is a post-processing confidence-calibration method

that considers different binning strategies and their combina-

tions to yield calibrated predictions. Similarly, for multiclass

classifiers, extensions to Platt scaling have been proposed

[21], though multiclass-classification is out of the scope of

this study. These post-processing calibration methods rely on

a validation dataset that is held out during training, which

means that less data is used during training. Recent studies

aim to incorporate confidence calibration during classifier

training using a variance-weighted confidence-integrated loss

function [22]. However, the challenges of jointly improving

classification and calibration performances on class imbal-

anced data have not been addressed.

Although many studies have focused on developing im-

proved post-processing algorithms, class probability estimates

on imbalanced datasets systematically underestimate the prob-

abilities for minority class instances [5], [23]. Moreover,

none of these proposed calibration algorithms addresses the

particular challenges of class imbalance with improvements

to the neural network architecture itself.

III. MATERIALS AND METHODS

A. The Cal-Net Architecture

Cal-Net works by transforming the binary classification

problem into a multitask problem with a primary and a

secondary output(Figure 2). The primary output (Y ) is tuned

to produce well-calibrated probabilities. The secondary output

(Y ′), used only during training, is tuned to maximize the

classification performance by upweighting the samples from

the minority class to be equally prevalent to samples from the

majority class. The network architecture enforces a monotonic

relationship between these two outputs. This multitask archi-

tecture enables Cal-Net to learn a hidden state that is tuned

to maximize both classification and calibration performances,

allowing both training tasks to cross-talk and refine the model

simultaneously.

The primary output, Y = {yi}, and the secondary output,

Y ′ = {y′i}, indexed by instance i, are computed using a

logistic activation function. The Cal-Net network architecture

enforces a monotonic relationship between the two outputs

Y and Y ′. This relationship is enforced by using a multitask

architecture that funnels to a hidden layer H , a layer with a

single node. The outputs are computed as monotonic functions

of this layer, which ensure that they are monotonic transfor-

mations of each other.

We have considered two variants. In the first variant, the

simplest “Cal-Net” defines both outputs Y and Y ′ as logistic
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functions of H without using a monotonic hidden layer

between H and Y . This requires four weights in total, with

two scaling weights and two biases. Two outputs are, thus,

constrained to be linear transforms of each other in logit space.

In the second variant, “Monotonic Cal-Net,” the primary

output Y is computed from H using a single layer monotonic

network. Here, the weight matrices are re-parameterized so

that they are always positive [24]. The secondary output is

still computed as a logistic function of H . The two outputs are

constrained to be monotonically related, but this relationship

can be non-linear in logit space. This architecture enables

Cal-Net to learn a hidden state H , that is tuned to maximize

both classification and calibration performances, allowing both

training tasks to cross-talk and refine the model simultane-

ously.

B. Two Outputs and Four Loss Components

The primary output, Y = {yi}, indexed by instance i, is

tuned with three loss components to produce well calibrated

predictions. The output node uses a logistic activation function.

Three components of the loss function are computed based on

this output and the target class labels T = {ti}. The secondary

output Y ′ is tuned with the fourth loss component LB .

The first loss component, LX , is the commonly used cross

entropy error between Y and T . On class imbalanced training

sets, instances in the majority class are far more common, so

they contribute more to the loss than instances in the minority

class.

The second loss component, LH , computes the “histogram

loss”, based on histogram binning [19]. Conceptually, exam-

ples are binned by their respective prediction values. In a

well-calibrated model, the proportion of positive examples in

each bin should match the midpoint of the bin. So the loss is

computed as the RMSE between these values,

LH =
1

N

N
∑

n=1

(pn −mn)
2, (1)

where pn is the proportion of positive examples in bin n, mn

is the midpoint of bin n, and N is the number of bins. In this

study, we used N = 10 in all assessments. The proportion is

computed by summing up over examples i,

pn =
mn · λp +

∑

i ti ·M(i, n)

λp +
∑

i M(i, n)
, (2)

where λp is the strength of a prior on the proportion and

M(i, n) is the membership of instance i in bin n. For this

study, we used λp = 10. The membership is thus computed

using the function

M(i, n) = max [0, 1− 2n · |mn − yi|] . (3)

This loss is minimized when the proportion of positive in-

stances in a bin matches the midpoint of that bin. Unfortu-

nately, this loss alone is not sufficient to train a well calibrated

model. A degenerate minimum occurs when all examples are

assigned the same score, equal to the proportion of positives

in the whole dataset.

The third loss component, LT , is the “t-test loss”, which ad-

dresses this degenerate solution by penalizing poor separation

between the distribution of positive and negative instances. We

define this loss as the negative of the two sample t-test score

between the positive and negative examples,

LT =

∑

i(1− ti) · yi − ti · yi
max[S, ǫ]

, (4)

where the summation is over examples i, S is the pooled vari-

ance and ǫ = 0.0001, which is used to prevent division by zero.

The pooled variance is computed as S =
√

s1/n1 + s0/n0,

where n1 and n0 are the number of positive and negative

instances, respectively, and s1 and s0 are the sum of the

squared deviations of the positive and negative instances’

predictions from their respective means. This loss function

is minimized when the positive examples are all assigned an

output of 1 and the negative examples are all assigned an

output of 0.

The fourth loss component, LB , is the “balanced loss”, and

is defined as the class-weighted cross entropy loss between T
and Y ′. Instances from the minority class are upweighted to be

equally prevalent as the samples from the majority class. By

equally weighting each class, this output is tuned to maximize

the classification performance.

The total loss function (L) for Cal-Net, then, is computed

as,

L = LX + λHLH + λTLT + LB , (5)

where the lambdas are hyper-parameters that can be used

to tune the histogram loss and the t-test loss, respectively.

Empirical analyses show that all four loss components are

necessary to optimize accuracy and calibration (section IV,

subsection C) in high class imbalanced scenarios. It is possible

that other formulations of the second and third loss component

could be effective and exploring options are left for future

work.

C. Training and Assessment Protocol

In this study, we assessed models for both calibration and

accuracy on several datasets using a standardized validation

protocol. For the synthetic datasets, a stratified sample of

10% of the data was held out as a test set. Another stratified

validation set of 10% was also held out and, thus, each model

was trained on the remaining 80% of the data. The validation

set was rotated through the data, so that nine models were

trained. The average performance of the nine trained models

on the test set have been reported. For the benchmark datasets,

a stratified sample of 20% of the data was held out as a test set,

another stratified validation set of 20% was also held out and

the remaining 60% of the data was used for training, thereby

training four models. The average performance of the four

models on the test set have been reported. Since the benchmark

datasets have a low number of minority samples, this strategy

ensured that some minority samples are present in each of the

sets.

For all the experiments, both Cal-Net versions used a hidden

layer of 10 units with ELU activation and L2 regularization.
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In other datasets and architectures, it may be worthwhile to

explore other ways of regularization such as L1 regularization

and dropout. Monotonic Cal-Net also included a monotonic

hidden layer of 10 units between H and the primary output Y.

The validation set was used to optimize the hyper-parameters.

We expected that the hyper-parameters, alternatively, can be

analytically derived as a function of dataset size and imbalance

ratio. In practice, we found that performance was not tightly

dependent on the hyper-parameters. In principle, for this

reason, the validation set could be merged into the training set,

exposing the model to more data during training. We have left

the question of how to determine the hyper-parameters without

a validation set for future study.

As a baseline for comparison, we trained a neural network

(NN) with a single hidden layer, consisting of 10 ReLU

activated units and L2-regularization. The NN was trained

using the class-weighted cross-entropy loss(LB), where sam-

ples from the minority class were upweighted to be equally

prevalent as the samples from the majority class. Making use

of the validation set, the output of the NN was calibrated us-

ing non-parametric and parametric post-processing calibration

techniques: isotonic regression [18], BBQ [20], [25] and Platt

scaling [17].

D. Evaluation Metrics

To evaluate the classification performance of Cal-Net and

the baseline models on imbalanced datasets, we reported the

Brier Score, maximum F-measure and area under the receiver

operating characteristic (AUROC) curve. F-measure is often

preferred when the class distribution is highly skewed, since it

measures the trade-off between precision and recall. AUROC,

alone, is not sufficient since it is often insensitive to class

imbalance [26]. To evaluate the calibration performance of

Cal-Net and the baseline models on imbalanced datasets,

we reported the expected calibration error (ECE) [20], [25],

average calibration error (ACE) [27] and also examined the

reliability diagrams [3]. As we will see, ECE and ACE can

often be misleading in quantifying the calibration performance

of a classifier in scenarios with high class imbalance, since

calibration models are often assigned a low ECE and ACE in

the presence of degenerate solutions (assigning low scores to

most examples), as is evident from the reliability diagrams. For

each dataset, we reported the imbalance ratio (IR), calculated

as n0

n1

, where n1 is the number of minority (positive) samples

and n0 is the number of majority (negative) samples. A

classifier with lower Brier score, higher F-measure and higher

AUROC along with lower ECE, lower ACE and not providing

degenerate solutions was preferred.

E. Synthetic Datasets

We generated four imbalanced binary classification datasets

using Sklearn’s [28] make classification function. Each dataset

was generated with 50 continuous features (15 informative and

35 redundant features), one binary outcome (2 classes) and

5 clusters per class. The binary outcomes were not linearly

separable, with a varying degree of class imbalance, controlled

using the weights parameter inside the make classification

function: 5.8% (IR=16.8), 1.1% (IR=87.5), 0.5% (IR=180.6)

and 0.11% (IR=906.8) minority class.

F. Benchmark Datasets

We used four imbalanced binary classification datasets

(Table I): (1) the UCI abalone-6 dataset [29], (2) the UCI

abalone-7 dataset, (3) the UCI abalone-8 dataset and (4) the

UCI adult census income dataset [30].

TABLE I
STATISTICS FOR BENCHMARK DATASETS

Dataset Size % +ve Features IR

Census income 32561 24.08 14 3
Abalone-6 4177 6.2 8 15.13
Abalone-7 4177 9.36 8 9.68
Abalone-8 4177 13.5 8 6.35

IV. RESULTS, ABLATIONS AND DISCUSSION

A. Performance on Synthetic Data

Cal-Net variants outperformed the baseline models in clas-

sification performance across all class imbalanced synthetic

datasets (Table II) in terms of the Brier Score, F-measure and

AUROC. In some cases, the “Monotonic Cal-Net” performed

slightly better, at the cost of a more complex architecture.

Cal-Net variants achieved the best all-round calibration

performance by obtaining strong performance in terms of

reliability plots (Figure 3), ECE and ACE (Table II). Although

Cal-Net variants achieved similar ECE and ACE scores to

the baselines, they avoided the pitfall of degenerate solutions

which assign all examples the same score, as shown in the

reliability plots (Figure 3). Consistent with these results, Cal-

Net variants exhibited far better reliability diagrams than other

methods (Figure 3) across all the four synthetic datasets. The

post-processing calibration methods such as BBQ and Platt

scaling achieved lower ECE and ACE scores with degenerate

solutions, assigning low probabilities to most examples and

with several empty bins. In contrast, the Cal-Net variants did

not achieve low ECE and ACE with degenerate solutions, mak-

ing predictions across the whole range from 0 to 1, assigning at

least some examples to most bins, with close correspondence

between bin centers and the proportion of positives in each

bin. Although ECE and ACE were not significantly lower for

Cal-Net in many cases, the reliability diagrams indicated that

Cal-Net had the best all-around performance. Although Cal-

Net variants did not always achieve the best possible scores

in a single metric, yet they provided overall better solutions.

B. Performance on Benchmark Datasets

We observed similar results on the benchmark datasets.

In terms of classification and calibration performances, the

Cal-Net variants often outperformed the baseline models by

achieving higher F-measure and AUROC scores along with

low Brier Scores, ECE and ACE (Table III). For the abalone-

8 dataset, we observed that the ECE scores of the Cal-Net
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TABLE II
ON THE SYNTHETIC DATASETS, CAL-NET VARIANTS ACHIEVED BEST ALL-ROUND CLASSIFICATION AND CALIBRATION PERFORMANCES.

5.8% minority class (IR: 16.8) 1.1% minority class (IR: 87.5)

Brier ↓ F-measure ↑ AUROC ↑ ECE ↓ ACE ↓ Brier ↓ F-measure ↑ AUROC ↑ ECE ↓ ACE ↓

Cal-Net 0.0208 0.77 0.91 0.0039 0.061 0.0051 0.69 0.9381 0.0012 0.076
Monotonic Cal-Net 0.0209 0.77 0.91 0.0035 0.065 0.0050 0.69 0.9355 0.0008 0.044

NN + Iso. Reg. 0.0263 0.72 0.89 0.0053 0.068 0.0058 0.64 0.9241 0.0012 0.122
NN + BBQ 0.0265 0.72 0.89 0.0065 0.121 0.0059 0.64 0.9184 0.0013 0.094
NN + Platt 0.0285 0.72 0.90 0.0173 0.113 0.0071 0.65 0.9230 0.0055 0.129

NN Uncalibrated 0.0912 0.72 0.90 0.2037 0.341 0.0698 0.65 0.9230 0.1764 0.426

0.5% minority class (IR: 180.6) 0.11% minority class (IR: 906.8)

Brier ↓ F-measure ↑ AUROC ↑ ECE ↓ ACE ↓ Brier ↓ F-measure ↑ AUROC ↑ ECE ↓ ACE ↓

Cal-Net 0.0017 0.78 0.952 0.0003 0.103 0.00017 0.912 0.939 0.00003 0.235
Monotonic Cal-Net 0.0019 0.774 0.953 0.0004 0.092 0.00021 0.892 0.935 0.00007 0.211

NN + Iso. Reg. 0.0019 0.770 0.956 0.0005 0.063 0.00021 0.891 0.935 0.00005 0.048

NN + BBQ 0.0019 0.769 0.952 0.0006 0.127 0.00021 0.892 0.933 0.00005 0.082
NN + Platt 0.0031 0.771 0.957 0.0039 0.164 0.0003 0.892 0.935 0.0005 0.173

NN Uncalibrated 0.0467 0.771 0.957 0.1448 0.437 0.0410 0.892 0.935 0.1022 0.422

Fig. 3. Reliability diagrams (bins=20) for the synthetic datasets showing Cal-Net variants are far better calibrated, even though standard calibration techniques
have nearly equivalent ECE. Top row: 0.5% minority class; Bottom row: 0.11% minority class. The x-axis or “confidence” is the average prediction of each
bin, the primary y-axis or “fraction positives” is the fraction of minority (positive) samples in each bin and the secondary y-axis or “density” is the histogram
density that shows the distribution of predictions for the classes.

TABLE III
ON THE BENCHMARK DATASETS, CAL-NET VARIANTS ACHIEVE BEST ALL-ROUND PREDICTIVE PERFORMANCES.

Abalone-6 : 6.2% (IR: 15.13) Abalone-8: 13.5% (IR: 6.35)

Brier ↓ F-measure ↑ AUROC ↑ ECE ↓ ACE ↓ Brier ↓ F-measure ↑ AUROC ↑ ECE ↓ ACE ↓

Cal-Net 0.046 0.464 0.914 0.025 0.179 0.102 0.423 0.781 0.021 0.129
Monotonic Cal-Net 0.046 0.456 0.908 0.023 0.169 0.101 0.423 0.788 0.025 0.139

NN + Iso. Reg. 0.051 0.413 0.883 0.024 0.264 0.110 0.4 0.76 0.045 0.099
NN + BBQ 0.048 0.421 0.882 0.021 0.063 0.108 0.407 0.76 0.041 0.064

NN + Platt 0.048 0.419 0.886 0.013 0.062 0.106 0.407 0.765 0.039 0.068
NN Uncalibrated 0.131 0.419 0.886 0.162 0.384 0.286 0.407 0.765 0.341 0.378

Abalone-7 : 9.36% (IR: 9.68) Census income: 24.08% (IR: 3)

Brier ↓ F-measure ↑ AUROC ↑ ECE ↓ ACE ↓ Brier ↓ F-measure ↑ AUROC ↑ ECE ↓ ACE ↓

Cal-Net 0.07 0.45 0.877 0.024 0.219 0.105 0.7 0.9 0.015 0.023
Monotonic Cal-Net 0.07 0.46 0.88 0.029 0.248 0.105 0.7 0.9 0.014 0.021

NN + Iso. Reg. 0.07 0.45 0.872 0.025 0.158 0.113 0.7 0.89 0.014 0.027
NN + BBQ 0.07 0.45 0.867 0.020 0.039 0.113 0.7 0.89 0.015 0.042
NN + Platt 0.07 0.45 0.875 0.017 0.091 0.114 0.7 0.89 0.023 0.037

NN Uncalibrated 0.1436 0.45 0.875 0.181 0.326 0.142 0.7 0.89 0.158 0.146
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Fig. 4. Reliability diagrams on benchmark datasets (bins=20) showing that Cal-Net variants have the best calibration performance.Top row: UCI Adult Census
dataset; Middle row: Abalone-8 dataset; Bottom row: Abalone-6 dataset. The x-axis or “confidence” is the average prediction of each bin, the primary y-axis
or “fraction positives” is the fraction of minority (positive) samples in each bin and the secondary y-axis or “density” is the histogram density that shows the
distribution of predictions for the classes.

variants were the lowest among all the methods. Although

the baselines achieved lower ACE scores, the reliability plots

(Figure 4) indicated that this was an artifact. Apart from

the Cal-Net variants, almost all baselines excluding the un-

calibrated neural network failed to assign predictions over

the entire range from 0 to 1. The post-processing calibration

methods achieved low ECE and ACE scores with degenerate

solutions, assigning low probabilities to most examples and

with several empty bins. A recent study [31] has highlighted

several drawbacks in using popularly used calibration metrics

such as ECE and ACE.

Notably, the Cal-Net architecture outperformed all other

baselines on the Abalone-6 dataset. Although the baselines

achieved lower ECE and ACE scores, the reliability diagrams

indicated that this was an artifact. Cal-Net variants achieved

the best overall classification performance by achieving higher

F-measure, AUROC and lower Brier scores. These results

suggest that Cal-Net’s multitask architecture enables the cal-

ibration task to provide information relevant to improving

classification accuracy and vice-versa. Results from these

empirical assessments showed that Cal-Net’s performance was

stable and robust across multiple class imbalance levels with

diverse amounts of minority samples.

C. Ablation Analyses

We performed ablation analyses to highlight the importance

of Cal-Net’s multitask architecture to incorporate balanced loss

(LB), histogram loss (LH ), t-test loss (LT ) and cross-entropy

loss (LX ), which are necessary to improve classification and

calibration performances in class imbalanced datasets. We

trained multiple variants of Cal-Net by removing components

such as the multitask architecture along with LB , LH , LT and

LX , and compared the classification and calibration perfor-

mances with the standard Cal-Net architecture while keeping

all other hyper-parameters fixed. We used the synthetic dataset

with 0.11% minority samples (IR=906.8) for these analyses.

1) Performance with and without LB: To analyze the

significance of the balanced cross entropy loss (LB), a variant

of Cal-Net was trained by eliminating LB thereby resulting in

elimination of the secondary output Y ′. In class imbalanced

datasets, LB is usually preferred since it prevents the classifier

from being biased towards the majority class and results in

better classification performance by enforcing a high penalty

for misclassifying minority samples. Under these settings,

analyzing the classification performance revealed that there

was a drop in AUROC and AUPRC by 0.006 and 0.019 respec-

tively (Figure 5A) when LB was eliminated from the standard

Cal-Net architecture. Precision recall curves are particularly

successful at quantifying the classification performance in the

case of imbalanced datasets [32]. This finding suggested that

using a multi-task architecture to incorporate LB in the loss

function was necessary to improve classification performance.

2) Performance with and without LH : We analyzed the

importance of the histogram loss (LH ) which was computed

using Cal-Net’s primary output (Y ) to minimize the mean

difference between the proportion of positives and predictions

across all the bins. A variant of the standard Cal-Net architec-

ture without LH was trained and its calibration performance

was compared to that of the standard Cal-Net architecture.

Analysis of the calibration performance revealed that the Cal-

Net architecture without LH was unable to reduce the devia-

tions between fraction positives and the average prediction in

several bins, as shown in the reliability plot (Figure 5B). The

Cal-Net architecture improved the calibration performance by

assigning examples in bins with close correspondence between

fraction positives and bin centers for most bins. In terms of

calibration metrics, the standard Cal-Net architecture achieved

lower ECE and ACE scores than the modified architecture
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Fig. 5. Ablation analyses using the synthetic dataset with 0.11% (IR: 906.8) minority class. (A): AUROC and AUPRC plots showing classification performance
in presence or absence of loss component LB . (B): Reliability diagrams (bins=20) showing how the presence or absence of loss components LH and LX

affect the calibration performance.

while making predictions over the entire range from 0 to 1.

This finding suggested the potential utility of LH in improving

the calibration performance in the Cal-Net architecture.

3) Performance with and without LX : We analyzed the

reliability plots for the standard Cal-Net architecture and a

modified variant without the cross-entropy loss (LX ). Fig-

ure 5B shows that the modified variant failed to achieve good

calibration performance without LX . The modified variant did

not predict over the entire probability range from zero to one

and had several empty bins. The calibration curve also did not

closely correspond to the ideal calibration curve and achieved

high ECE and ACE scores. This finding highlighted that

using the unweighted cross-entropy loss LX on the primary

output Y is necessary to improve classification and calibration

performances.

4) Performance with and without LT : We trained a variant

of Cal-Net without the t-test loss (LT ) to analyze its utility.

However, empirical analyses indicated that there were no

significant drops in classification and calibration performances

when compared to the standard Cal-Net architecture. LT

penalizes poor separation of classes and thereby helps in

preventing degenerate solutions. In datasets, where the sep-

aration between classes is poor, tuning LT may result in

better classification performance. It is plausible that other

formulations of this loss function could be effective and is

left for future studies.

5) Effects of size of training and validation sets: One

plausible reason why the post-processing calibration tech-

niques performed poorly may be attributed to the number of

samples in the validation set that was used for calibrating the

outputs of the underlying neural network classifier. However,

it was observed that adding more samples in the validation

set did not improve the calibration performance of the post-

processing calibration techniques. Cal-Net variants continued

to achieve highest AUROC and F-measure as well as the low

ECE and ACE scores while assigning samples in most bins

thereby avoiding the pitfalls of degenerate solutions. In cases

where there is a shortage of available data-points for training

due to data unavailability, it may often be challenging for

neural network architectures to generalize well in classification

tasks [33]. Furthermore, previous research have shown that

neural network classifiers tend to perform poorly depending

on the degree of class overlap between the minority and

the majority classes and availability of training data [34],

[35]. Hence, Cal-Net may be often susceptible to problems

commonly faced by neural network architectures. Furthermore,

since confidence calibration is a function of confidence and

accuracy, poor class separation in class imbalanced datasets

may often adversely affect confidence calibration.

V. CONCLUSION

As neural networks are increasingly being used in criti-

cal decision-making scenarios, improving classification and

calibration performances in class imbalanced datasets is a

challenging problem of high practical interest. In this work, we

developed Cal-Net, a neural network architecture to simulta-

neously learn classification and calibration in class imbalanced

datasets. Empirically, we showed that Cal-Net outperforms

commonly used post-processing calibration methods and cost-

sensitive neural network architectures both in classification

and calibration tasks across four synthetic and four real world

datasets by achieving higher F-measure, higher AUROC and

lower Brier Score among all the methods. While this study

only examined datasets using feed-forward neural networks,

Cal-Net may be incorporated in complex classification ar-

chitectures as the final state to handle class imbalance for

binary classification tasks. We are optimistic that Cal-Net may

address challenges in classification tasks involving complex

neural network architectures and imbalanced datasets.
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