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predicted, a crucial limitation because reactive drug metabolites are a
key driver of adverse drug reactions (ADRs). Additionally, further metabolic events cannot be forecast, even though the metabolic
path of the majority of substrates includes two or more sequential steps. To overcome the myopia of the SOM paradigm, this study
constructs a well-defined system—termed the metabolic forest—for generating exact metabolite structures. We validate the
metabolic forest with the substrate and product structures from a large, chemically diverse, literature-derived dataset of 20 736
records. The metabolic forest finds a pathway linking each substrate and product for 79.42% of these records. By performing a
breadth-first search of depth two or three, we improve performance to 88.43 and 88.77%, respectively. The metabolic forest includes
a specialized algorithm for producing accurate quinone structures, the most common type of reactive metabolite. To our knowledge,
this quinone structure algorithm is the first of its kind, as the diverse mechanisms of quinone formation are difficult to systematically
reproduce. We validate the metabolic forest on a previously published dataset of 576 quinone reactions, predicting their structures
with a depth three performance of 91.84%. The metabolic forest accurately enumerates metabolite structures, enabling promising
new directions such as joint metabolism and reactivity modeling.

Bl INTRODUCTION formation without significantly affecting its pharmacophore.™**
Safety problems are one of the primary causes of drug Mass spectrometry assays utilizing simple traps such as
candidate attrition.' ~® Furthermore, idiosyncratic adverse drug glutathione or cyanide is frequently used for initial screening
reactions (IADRs) frequently only arise after approval, of reactive metabolites-forming compounds.35’36 However,

incurring  significant resources. Many IADRs present as
drug-induced hver i (}ury, the leading driver of drug withdrawal
from the market."~'* Although IADRs are poorly understood,

while glutathione and cyanide both only have a single
nucleophilic side, macromolecules such as protein and DNA

. . -
many are linked to bioactivation: enzymatic conversion of are much larger and contain multiple nucleophilic sites.
drugs to electrophilically reactive metabolites. H=1S Reactive Consequently, binding to glutathione and cyanide may not
metabolites covalently bind to nucleopllgllig sites within accurately predict binding to protein and DNA, hence a
blologlcal macromolecules, including DNA and off-target significant caveat for assays utilizing these simple traps.38’39
protelns Con]ugatlon to DNA is frequently mutagen-
ic,””>® and conjugation to proteins can disrupt their - ]
functions**** or incite adverse immune responses leading to Received:  April 13, 2020

IADRs.26~30 Published: September 3, 2020

Detecting reactive metabolites early in the development
process is essential to minimize toxicity risk.'”*'™ If
bioactivation is observed for a particular lead compound,
small structural differences may avoid reactive metabolite
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Figure 1. Metabolic forest explores metabolic pathways by sequentially applying metabolism rules. These pathways can reproduce experimentally
observed structures or enumerate new structures. Oftentimes, there are several possible pathways between substrates and metabolites. For example,
butadiene (A), a carcinogenic industrial chemical,">”?~®" has several known metabolites.*’ The bottom pathway, (A) — (G) = (H) — (I) = (J),
demonstrates an experimentally elucidated pathway. First, cytochromes P450 and myeloperoxidase epoxidize 1,3-butadiene®~** form butadiene

monoxide (G). Second, epoxide hydrolase forms 3-butene-1,2-diol (H

).85

Third, cytochromes P450 form hydroxymethylvinyl ketone (I), a highly

reactive Michael acceptor.*® Fourth, glutathione conjugates to the reactive metabolite (J).*® Three alternative pathways are shown. The (A) — (B)
— (F) = (I) —» (J) pathway has an equivalent number of metabolic steps, with two different intermediates (B, F) from the experimentally known
pathway. The (A) — (B) = (C) — (D) — (E) — (I) — (J) pathway has several additional steps. The color shading on each site shows reactivity

score assigned by our published reactivity model.

The score ranged from 0 to 1, displayed as rainbow shading on each site in accordance with the

provided reactivity scale. The scale provides both color and size cue for prediction interpretation.

Binding to biological macromolecules can be more
accurately quantified in experiments with radiolabeled
compounds.”** Still, radiolabeled compounds are generally
not used until the late stage of preclinical development because
they are expensive to synthesize.

Computational approaches could facilitate reactive metabo-
lite detection by rapidly flagging drug candidates susceptible to
bioactivation, thereby reducing both the total number of
needed experiments and the chances of missing potentially
toxic molecules. Currently, the dominant computational aid for
avoiding bioactivation is the structural alert approach.”*'~*
Using a database of structural alerts, which are simply motifs
such as phenols or furans that are often bioactivated, molecules
containing those substructures can easily be flagged.**
However, structural alerts have several shortcomings: they
are often not actually bioactivated due to specific molecular
context, they do not match all drugs that produce reactive
metabolites, and they are purely retrospective.* ™"

Instead, several alternative, more flexible approaches have
the potential to learn concepts from the data that generalize to
never-before-seen structures. The majority of the work focus
on predicting sites of metabolism (SOMs): the specific atoms
that are metabolically modified by enzymes.*’ %" while others
concentrate on metabolite structure inference from the parent
compound.®>~7*

A molecule’s SOMs can be used to infer the structures of its
metabolites or suggest where a molecule might be rationally
redesigned. However, SOM predictors also have limitations.
First, they omit consideration of reactivity and therefore miss
the second half of the bioactivation mechanism. As a result,
benign metabolic steps like hydroxylation are indistinguishable
from bioactivation events like epoxidation. For example, the
epoxidation of carbamazepine to carbamazepine-10,11-epox-
ide, which is linked to adverse reactions,”>™"° would eventually
form the same product as hydroxylation at both carbons of the
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bond where the epoxide forms. Second, SOM models are
limited by datasets containing missing intermediates that elude
experimental detection. For example, one systematic review of
experimental metabolism literature reported that only 45.6% of
all metabolites were formed by a single step, compared to 32.0
and 26.5% of metabolites that were generated by two or three
or more steps, respectively.”® Both shortcomings of the SOM
paradigm are solvable by explicitly enumerating metabolite
structures.

There are published computational metabolism tools that
infer metabolite structures from parent compounds.®>~"* In
this work, we built the metabolic forest: a collection of
metabolism rules that rapidly enumerates metabolite structures
for one or several sequential steps (Figure 1). To rigorously
evaluate its ability to reproduce experimentally observed
structures, we quantified performance across a large,
literature-derived dataset of tens of thousands of reactions.
By performing a systematic search between reported substrates
and products, the metabolic forest automatically labels SOMs
(and reveals manual annotation errors) and suggests missing
intermediate structures. The metabolic forest predicts many
different types of metabolism, including quinone formation.
Although their formation is nontrivial to programmatically
represent, quinone species are especially important to include
in a useful method because they compose over 40% of known
reactive metabolites.”® Using the quinone and epoxide
structures generated by the metabolic forest, we link previously
developed metabolism*>®® and reactivity’” models to generate
bioactivation hypotheses. A direct comparison of our approach
to BioTransformer,”” SyGMa,70 and GLORY”" is shown in our
subsequent work.”®

B DATA AND METHODS

Phase | Metabolism Data. We measured the performance
of the metabolite predictor on the phase I metabolism dataset,

https://dx.doi.org/10.1021/acs.jcim.0c00360
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detailed in our recent study.®* In short, these data consisted of
20736 in vitro and in vivo phase I human records from the
literature-derived Accelrys Metabolite Database (AMD). We
identified five categories of phase I metabolism: stable
oxygenation, unstable oxygenation, dehydrogenation, hydrol-
ysis, and reduction, and manually labeled 10280, 5811, 2794,
3869, and 1590 sites of metabolism. Due to their complex,
often multistep mechanisms, quinone formations do not fit
well into the criteria used to extract and label the phase I
dataset. Instead, to quantify performance at predicting quinone
structures, we used a dataset from one of our previous studies
consisting of 576 quinone formations extracted from the
AMD.*

Metabolic Forest. We built a metabolite structure
predictor that rapidly enumerates trees of metabolic pathways.
This algorithm—codenamed the metabolic forest—was built in
python using the 2017.09.01 release of RDKIT, an open-
source cheminformatics package.”” The metabolic forest
included 24 reaction rules (Table 1). Each rule belonged to

Table 1. Twenty-Four Rules Used by the Metabolic Forest,
Their Associated Ruleset, and Their Type

rule ruleset type
acetylation conjugation
azo splitting hydrolysis
benzodioxole reduction  reduction

dealkylation unstable oxygenation

dehydration reduction

dephosphorylation hydrolysis

epoxide opening stable oxygenation

glucuronidation conjugation

glutathionation conjugation

hydrolysis carbonyl cleavage smarts reaction rule
hydroxylation stable oxygenation

nitrogen oxidation
nitrogen reduction
oxidative
dehalogenation
oxygen reduction

reductive
dehalogenation

sulfation

sulfur oxidation
sulfur reduction
dehydrogenation
hydrogenation
quinone formation

epoxidation

stable oxidation
reduction

unstable oxygenation

reduction

reductive
dehalogenation

conjugation

stable oxygenation
reduction
dehydrogenation
reduction resonance pair rule
quinone formation

stable oxygenation

resonance structure
rule

tautomerization tautomerization

a ruleset, including (1) each of the five broad classes of ghase I
metabolism labeled in our simultaneous study,’* (2)
conjugation, (3) quinone formation, and (4) tautomerization.
The conjugation and tautomerization rulesets encompass
transformations that were sometimes implicitly included in
our phase I and quinone formation datasets, perhaps due to
experimental limitations.

For phase I metabolism, the stable oxygenation ruleset
included the epoxidation, hydroxylation, nitrogen oxidation,
and sulfur oxidation rules, the unstable oxygenation ruleset
included the dealkylation and oxidation dehalogenation rules,
the dehydrogenation ruleset included a lone dehydrogenation

4704

rule, the hydrolysis ruleset included the dephosphorylation,
epoxide opening, carbonyl cleavage, and azo splitting rules, and
the reduction ruleset included the benzodioxole reduction,
dehydration, hydrogenation, nitrogen reduction, sulfur reduc-
tion, oxygen reduction, and reductive dehalogenation rules.

The conjugation ruleset included four rules specifying the
reactions acetylation, glucuronidation, glutathionation, and
sulfation.

The quinone formation ruleset included a single quinone
formation rule that both modeled the two-electron oxidation
that directly forms quinones and several types of reactions that
often set the stage for that oxidation, such as aromatic
hydroxylation.

Similarly, the tautomerization ruleset had a single epon-
ymous rule. Tautomerization, although not generally regarded
as a type of metabolism, nevertheless plays a role in known
metabolic pathways of drugs like clopidogrel®® and raniti-
dine.*’

Programmatically, these rules fell into three archetypes:
SMARTS rules, resonance pair rules, and resonance structure
rules, detailed in the following sections.

SMARTS Rules. Many of the reaction rules used the
reaction SMARTS syntax provided by the open-source
cheminformatics library RDKit (Table 2).%7 Reaction
SMARTS syntax is derived from SMARTS patterns, and has
similarities to the alternative reaction languages “SMIRKS”?%!
and “SMILES”.”” Reaction SMARTS are a compact method
for encoding transformations that occur on a small number of
localized atoms. For example, the string: “[#6h:1]>[*:1]0”
expresses a hydroxylation reaction where the oxygen (“O”) is
connected with a single bond to a carbon with at least one
hydrogen (“[#6h:1]”). The oxygen will be protonated during a
sanitization step before outputting the final structure. The
exact Reaction SMARTS used for each rule—developed by
manual inspection and adjustment—are listed in Table 2.

Resonance Pair Rules. Reaction SMARTS work well for
encoding transformations that occur on small groups of
neighboring atoms. However, Reaction SMARTS do not
extend well to reactions that can occur at distal sites on a
molecule due to resonance structures. For example, quinone
formation reactions are challenging to encode because they can
involve several atoms across one or more rings, and by
definition, entail a loss of aromaticity. Consequently, there is
no way to write a well-generalized SMARTS rule for quinone
formation because bond and atom attributes shift simulta-
neously. A SMARTS rule matching a certain quinone
formation may not generalize to even slightly different ring
patterns, despite identical underlying principles.

Instead, we designed resonance reaction rules that share a
common task: finding a path across the conjugated or aromatic
systems within a molecule, while also efficiently iterating
through the resonance structures in that molecule. This task is
more complicated than one might initially imagine because
input molecules may have many possible resonance structures
and many possible paths through those resonance structures.
Several implementations were tested but ultimately abandoned
due to combinatorial explosions on certain problematic types
of molecules. Ultimately, we found an efficient implementation
that enables rapid computation of resonance-based metabo-
lites, even across large aromatic systems like polycyclic
aromatic hydrocarbons.

Fundamentally, this implementation considers various
resonance structures in turn. However, rather than naively

https://dx.doi.org/10.1021/acs.jcim.0c00360
J. Chem. Inf. Model. 2020, 60, 4702—4716
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Table 2. Reaction SMARTS Used by the Metabolite Prediction Algorithm

rule reaction SMARTS
acetylation [#7,#8,#16;h: 11> *:1][#6](=[#8])[#6]
azo splitting [#7:1]=[#7:2]>[*:1].[*:2]
benzodioxole reduction [#6R:1]-[#8R:2]-[#6H2R:3]- [#8R 4]-[#6R:S]>>([*:1]-[*:2].[*:3].[*:4]-[*:5])
dealkylation [#6H3:1][#7 #8HO#16:2]>([*:2].[*:1](=0)0)

[#6H3:1][#7,#8HO0,#16:2]>([*:2 [* 1]=0)

[#6H3:1][#7,#8H0,#16:2]>([*:2].[*:1]-O)

[#6H2:1][#7,#8HO0,#16:2]>([*:2].[*:1](=0)0)

[#6H2:1][#7,#8H0,#16:2]>([*:2].[*:1]=0)

[#6H2:1][#7,#8H0,#16:2]>>([*:2].[*:1]-0)

[#6H1:1][#7,#8HO0#16:2]>([*:2].[*:1]=0)

[#6H1:1][#7,#8H0,#16:2]>>([*:2].[*:1]-0)

[#6HO:1][#7,#8H0,#16:2]>([*:2].[*:1]-O)

[#6:1][#6:2]>(O-[*:1].[*:2])

[#6h:1][#6:2]>(0-[*:1].[*:2])

[#6h:1][#6:2]>(0=[*: 1] [#:2])

[#8H1:3]-[#6:1]-[#7 #8,#16:2]>([*:3]=[*:1].[*:2])
dehydration [#6,#7:1]-[#8H1:2]>>[*:1].[*:2]

[#6:3]-[#6:1]-[#8H1:2]>[*:3]=[*:1].[*:2]

[#6,#7:1]=[#8:2]>[*:1].[*:2]
dehydrogenation [#16v4:1]-[Oh:2]>[*:1]=[*:2]

[#6h:1]-[#6D1H3 #6D2H2 #6D3H1,#7D2H1,#7D1H2,#7D3,#8H1:2 3> *:1]=[*:2]
dephosphorylation [#8:1]=[#15:2]([#8:3]) ([#8:4]) [#8:5][#6:6 > *:1]=[*:2]([*:3]) ([*:4]) [*:5].0[*:6]
epoxidation [#6:1]=[#6#7:2]>[*:1]1-[*:2][O]1
epoxide opening [#6:1]1[#8:2][#6:3] 1>([*:2][*:3][*:1])

[#6:1]1[#8:2][#6:3]1>([*:2][*:3][*:1]O)
glucuronidation [#6:1][#6:2](=[O,N,P,S:3])[#8:4]>>01C(C(=0)0)C(0)C(0O)C(O)C([*:4][*:2](=[#8:3])[*:1])1

[#8H1:1][#6:2]>01C(C(=0)0)C(0)C(0)C(O)C([*:1][*:2])1
glutathionation [#6:1]1[#8:2][#6:3]1>C(CC(=0)N[C@@H](CS([*:1][*:3][*:2]))C(=O)NCC(=0)0)[C@@H](C(=0)0)N

[#6:1][Cl:2]>C(CC(=0)N[C@@H](CS([*:1]))C(=0)NCC(=0)0) [C@@H](C(=0)O)N

[#16h1:1]>C(CC(=0)N[C@@H](CS([*:1]))C(=0)NCC(=0)0)[C@@H](C(=0)O)N
hydrogenation [#6:1]#[#6:2]>[*:1]=[*:2]

[#6:1]=[#6:2]>[*:1]-[*:2]
hydrolysis (#8,#16:1]=[#6:2]-[#7,#8,#16:3]>([*:1]=[*:2](0).[*:3])

[#8,#16:1]=[#6:2]-[#7 #8,#16:3]>([*:1]=[*:2].[*:3])
hydroxylation [#6h:1]>[*:1]0

[#6h2:1]>[*:1]=0
nitrogen oxidation [#7v3:1]>[*:1]0

[#7v3:1]>[*:1]=0
nitrogen reduction [(#7:1](=[#8:2])-[#8:3]>[*:1].[*:2].[*:3]

[#7:1]([#8:2]) [#8:3]>[*:1].[*:2].[*:3]

[#8:2]=[#7:1]-[#8:3]>[*:1].[*:2].[*:3]

[(#8:2]=[#7:1]-[#8-1:3]>[*:1]=[*:2].[*:3]

[#7D2:1]=[#8:2]>[*:1]

[#7:1]-[#8:2]>([*:1].[*:2])
oxidative dehalogenation [#9,#17 #35#53 #85:1]-[#6:2]>[*:1].[*:2]0

(#9,#17,#35 #53,#85:1]-[#6h1:2]>>[*:1].[*:2]=0

[#9,#17 #35,#53#85:1]-[#6H2:2]>[*:1].[*:2](0)=0

(#9417, 435 #53,#85:1]-[#6:2] [#6H1:3]>[*#:2](0) [*:3]-[*: 1]

[#9,#17 #35,#53 #85:1]-[#6:2]-[#9,#17 #35,#53 #85:3 > *:1].[*:2](0)=0.[*:3]

(#9417 435,453, #85:1]-(#6:2]-[#9,#17,#35,#53,#85:3 > [*:1].[:2](0) 0.[*:3]
oxygen reduction [#8:1]=[#6#7:2]>[*:1]-[*:2]

[#8:1]-[#8:2]>[*:1].[*:2]
reductive dehalogenation [#9,#17 #35#53 #85:1]-[#6:2]>[*:1].[*:2]

(#9417, 435453 #85:1]-(#6:2]-[#6:3 > [*:1].[*:2]=[*:3]
sulfation [#6:1][#8:2]>[*:1][*:2]S(=0)(=0)0

[#6:1]1=(#6:2][#6:3]2[#8:7][#6:4]2[#6:5]=[#6:6] 1>[*:1]1=[*:2][*:3]=[*:4](-S(C) (=0) (=0)) [*:5]=[*:6]1
sulfur oxidation [#16;v2,v4:1]>[*:1]0

[#16;v2,v4:1]>[*:1]=0
sulfur reduction [#16:1]=[#8:2]>[*:1].[*:2]

[#16:1]-[#16:2]>[*:1].[*:2]

4705 https://dx.doi.org/10.1021/acs.jcim.0c00360
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Table 3. Transforms Used by the Resonance Pair Rules

rule endpoint (transforms) system type

dehydrogenation [#6h:1][#6D1H3,#6D2H2,#6D3H1,#7D2H1,#7D1H2,#8H:2] (“single2double”) conjugated
[#6h:1][#7D3:2] (“single2double”, “addPlus1”)

hydrogenation [*:1] conjugated
[#6R:1][#6D 1H3,#6D2H2,#6D3H1,#7D2H1,#7D1H2,#8H:2] (“single2double”)
[#6D2H1:1] (“addO”)

quinone formation [#6HOR:1]-[F,CLBr,l:2] (“replaceHalogenWithO”, “single2double”) aromatic
[#6HOR:1][#7D3:2] (“single2double”, “addPlus1”)
[#6R:1][#7,#8:2][#6:3] (“dealk”, “single2double”)

O

20
O

Site of
Metabolism

Figure 2. Raloxifene illustrates the quinone prediction method. Various resonance structures are considered in turn. For each structure, all paths
between each pair of atoms are examined. Each atom pair is tested for compatibility with several predefined endpoint structures. A valid path is
indicated by red bonds on the upper left. For this path, both endpoints are hydroxyls, in purple, which form a long-range quinone in a one-step,
two-electron oxidation when the single and double bonds swap, as indicated by the arrows. Two-step quinone formations are also predicted by our
method, such as that formed by hydroxylation followed by oxidation to form the lower right structure.

consider all resonance structures for an input molecule, only
potentially useful resonance structures are produced. This
approach is practical owing to the insight that conjugated-
system-based metabolic events can only occur across a single
conjugated system, so the various conformations of any other
conjugated system are not relevant. First, a molecule is
fragmented into its constitutive conjugated systems. Next, for
each conjugated-system fragment, all resonance structures are
generated for that fragment and then reattached to the rest of
the molecule. As a result, the total number of resonance
structures produced by a molecule is a linear combination of
the number of resonance structures in each of its conjugated
systems, rather than a multiple. This approach significantly cuts
down on the total number of resonance structures produced
but does not forgo any resonance structure that might be
relevant for a given transformation, which can only occur
across a single conjugated system.

In particular, pairs of atoms within each resonance structure
were considered in the resonance pair rule (Algorithm 1). Only
pairs that matched all of the following criteria: (1) both within
the same conjugated system, (2) at least one connecting path
that alternated double and single bonds, and (3) both
matching any of several predefined endpoint structures, were
considered. Each of these endpoint structures had a
corresponding list of possible structural modifications. For
each valid pair, each possible combination of modifications was
performed. For each resulting structure, for each connecting
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path of alternating single and double bonds between the two

atoms, a final structure was generated by swapping the single
and double bonds.

Algorithm 1 The resonance pair algorithm. Algorithm takes inputs (1) the molecule, (2) end-
point patterns as SMARTS strings, and (3) sets of atoms that are grouped by connected system,
aromatic or conjugate as needed determined for the rule.

1: procedure RESONANCEPAIRALGORITHM (Molecule, Transforms, Systems)

2 T — all matches in Molecule to Transforms
3:  for Sin Systems do

4 for KekuleForm (K) in $ do

5

for PairedMatches (Aj, A2) in both Sand T do
P — path of alternating single/double bonds between A; and Ay, with start and end double bond
M «— transform § in Molecule to match K
M — apply transform from A; to M
M « apply transform from A, to M
M « swap single and double bonds along P in M
vield M

neepled

The exact specifications of the three resonance pair rules,
dehydrogenation, hydrogenation, and quinone formation rules,
are detailed in Table 3. Dehydrogenation and hydrogenation
considered conjugated systems, as previously described.
However, due to its mechanism, the quinone formation rule
only needed to consider aromatic systems (Figure 2).

Resonance Structure Rules. The tautomerization and
epoxidation rules also used resonance structures, but are
distinct from the resonance pair rules because they do not
perform combinations of modifications on pairs of atoms. The
tautomerization rule works by iterating through resonance
structures and enumerating all atoms one-bond away from
each conjugated system (Algorithm 2). For each of these
neighboring atoms, all paths from the neighbor through each
atom within the conjugated system, where the number of

https://dx.doi.org/10.1021/acs.jcim.0c00360
J. Chem. Inf. Model. 2020, 60, 4702—4716
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double and single bonds was the same, were considered. For
each path, all double and single bonds were swapped to emit a
tautomer. The tautomerization rule does not change the
overall number of double bonds, single bonds, or hydrogens.
The epoxidation rule used resonance structures and a pattern
listed in Table 2 to replace double bonds between carbons with
epoxides.

Algorithm 2 The tautomerization algorithm.
1: procedure TAUTOMERIZATIONRULE(Molecule)
2: for S in ConjugatedSystems do
for KekuleForm (K) in S do
for Neighbor (N) in Molecule not in S do
for Atom (4) in § do
P « path of alternating single/double bonds between A and N, with equal number of single
and double bonds
M «— swap single and double bonds along P in M
8: yield M

DR w

N

Algorithm for Predicting Depth Two or Three
Metabolite Structures. To search for multiple-step metab-
olites, a breadth-first search was performed, with depth capped
at two or three. In this algorithm, the search continued until a
metabolic path was found between substrate and metabolite.
For example, for a depth two search, each depth one
metabolite was first considered in turn. If any of the depth
one metabolites matched the experimentally known metabo-
lite, the search terminated. Otherwise, all of the depth one
metabolites were considered, one at a time. For each depth one
metabolite, all its metabolites were generated (equivalent to
depth two metabolites relative to the starting reactant). If any
of those depth two metabolites matched the experimentally
known product, the search terminated. This process continued
until either a match was found or the specified depth limit was
exceeded. This search is only limited by the size of the input
molecule, the quality of the rulesets, and the computational
power available. In this study, we at most ran a depth three
search to find paths between substrates and metabolites, but
deeper searches are readily possible. This algorithm can also be
modified to only take as input a substrate structure, and
generate all possible metabolites to a given depth.

B RESULTS AND DISCUSSION

We explored several applications of the metabolic forest. First,
we quantified performance at accurately reproducing metab-
olite structures and the corresponding pathways across a large,
literature-derived dataset of phase I reactions. Second, using
these pathways, we automatically labeled SOMs, thereby also
fixing any mistakes in the original, manual labels. Third, we
measured the intermediate metabolites generated when finding
paths between substrates and metabolites. Fourth, we
quantified how well the metabolite predictor produced
quinone structures, a reaction type that is both especially
challenging to represent and especially important for
anticipating toxicity.

Accurate Predictions of Metabolite Structures. This
study aimed to develop a system for accurately predicting
metabolite structures. With this in mind, a critical metric was
the percentage of AMD records for which the metabolite
predictor generated the exact experimentally observed
metabolite. Each AMD record includes the structures of both
substrate and product. Using these structures, a useful method
should find a series of transformations linking substrate and
product, for any record that adheres to known metabolism
patterns.

We performed several experiments to measure the ability of
the metabolic forest to accurately predict the product
structures of 20 736 AMD records (Table 4). First, we ran

Table 4. Performance of Several Methods at Reproducing
the Structure(s) Linking the Substrates and Products of
20736 AMD Records”

depth depth depth annotated
reaction type three two one site
overall 88.77 8843 79.42 78.36
C-hydroxylation 91.29 91.07 84.71 84.24
hydrolysis 86.73 86.41 75.53 75.70
N-dealkylation 90.09 89.91 81.42 81.17
reduction 82.71 82.33 70.15 68.59
aliphatic hydroxylation 92.69 92.45 86.60 86.07
aromatic hydroxylation 92.11 92.06 86.85 86.55
O-dealkylation 91.57 91.4 86.15 85.76
C-oxidation 83.39 82.61 56.69 55.07
hydrogenation 84.71 84.32 66.87 66.72
N-demethylation 88.66 88.42 80.11 79.88
O-demethylation 93.89 93.72 90.58 90.31
dehydrogenation 86.93 86.04 68.89 66.31
epoxidation 79.19 78.51 70.54 70.54
oxidation 77.41 76.24 54.08 48.69
S-oxidation 85.9 85.32 77.24 73.86
N-oxidation 88.71 87.62 80.88 80.88
ring opening 55.25 5322 19.49 16.10
dehalogenation 62.6 5833 43.09 29.88
dearomatization 65.29 65.08 51.45 46.49
N-deacylation 92.26 92.26 80.87 80.18
O-deacylation 97.65 97.65 90.85 90.85
aromatization 62.34 59.48 40.26 26.23
oxidative n-dealkylation 91.29 91.29 86.19 85.59
chain shortening 67.2 67.2 12.54 7.40
N-reduction 78.35 78.35 69.76 69.42
oxidative deamination 88.65 87.23 74.47 74.11
glutathionation 34.53 34.53 27.35 0.00
optical resolution 94.44 94.44 91.67 91.67
tautomerization 56.13 52.36 8.02 6.60

“For each reaction type, the highest performance is in bold. Any score
not statistically different from the best performance is in italics (using
a P-value cutoff of 0.05).

an annotated search, whereby we generated all metabolite
structures for all of a molecule’s manually labeled SOMs;
which resulted in an overall performance of 78.36%. Second,
we ran a depth one search (Algorithm 3), which improved over
the known site search with an overall performance of 79.42%.
Deepening the search to depths two or three depth
significantly increased the overall performance to 88.43 and
88.77%, respectively. Previous experience with the AMD
suggested that many reactions reported in a single record may
in fact be two or more metabolic steps, and this is confirmed
by the superior performance of the two and three depth search
compared to the one depth search.

Algorithm 3 The breadth-first search algorithm. Algorithm takes inputs (1) the substrate, (2)
the metabolite, (3) a ruleset(a collection of metabolic rules) and (4) a depth limit.
L p dure BFSMETABOLITE(Substrate,| ite,RuleSet,Depth)
2; Intermediates()=[] & Empty list
3 for Rule(R) in RuleSet do
4 for Transforms in R do
5; T «— all matches in Substrate to Transforms
6: for Site(S) in T do
7
8;
9;

M «— apply T at S on Substrate
if M == Metabolite then return M
else

10: I—append Mto I

11: if Depth >= 1 then

12: for Min I do

13: BESMetabolite(M, bolite,RuleSet,Depth — 1)

For a given input molecule, the total number of structures
generated in multiple steps combinatorially explodes. Con-

https://dx.doi.org/10.1021/acs.jcim.0c00360
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Figure 3. Metabolic forest took as input the reactant and product structures of AMD records. For each of the 20 736 records, the algorithm
performed a breadth-first search to link the reactant and product using a collection of metabolic rules. These searches continued until a pathway to
the exact product structure is found, the depth-limited was reached, or a maximum time limit was exceeded. Top left: the overall percentage of
records for which a valid pathway was found, using a time limit of 1000 s. In the annotated site comparison experiment, a depth one search was
restricted to using sites of metabolism matching those that were manually annotated during construction of the dataset. Bottom left: performance is
broken down for the 10 most frequent reaction types of the dataset, as recorded in the AMD. Detailed results are reported in Table 4. Top right:
percent error as a function of the maximum time limit allowed per record. The depth one search requires little running time to exhaust all
possibilities. In contrast, performances of the depth two and depth three search are improved by allowing for a longer search. Bottom right: the
corresponding number of records that timed out for each depth and time limit.

sequently, for each breadth-first search, we measured perform-
ance at five time cutoffs of 50, 125, 250, 500, and 750 s/
reaction record. For searches of depth one, the time cutoff had
minimal effect on performance. This is as expected because all
depth one possibilities were explored within the allotted time
window. In contrast, searches of greater depth often required a
longer run time to find a valid solution (Figure 3).

Examples of records for which a path was successfully
elucidated are shown in Figure 4. For example, for zotepine, it
was straightforward to find a one-step sulfur oxidation linking
substrate and its metabolite. Also highlighted in Figure 4 are
examples of records for which a valid path was not found. For
example, for a capsaicin metabolite, glutathione attaches to an
unsubstituted carbon on a phenyl ring and a hydroxyl is
simultaneously added at a different carbon meta to the
glutathionation site. Some steps seem to be missing, as the
simultaneous glutathionation and meta hydroxylation is not a
known metabolic pathway. Although we might hope to capture
this metabolite with a deeper or faster search by combining
metabolism rules, encoding a rule for such an idiosyncratic case
would suggest mere memorization of the data, rather than
generation of metabolically logical structures.

Inferring Intermediate Metabolite Structures. Many
AMD records have missing intermediates (Figure S). Such
records are often immediately obvious during manual
inspection, for they often entail multiple transformations at
different parts of the molecule, such as two hydroxylations.
Another frequent variety is sequential transformations at a
single site being conflated into a single reaction. For example,
some halogenated aromatic rings are reported to immediately
form quinones, without reporting the intermediate dehaloge-
nation event that needs to take place before the two-electron
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oxidation to a quinone. As previously discussed, we
implemented a depth-first search algorithm to infer inter-
mediate metabolite structures. To quantify the number of
missing metabolites discovered, we subtract the number of
metabolites found by the depth one search from the number of
metabolites found by the depth two search. This resulted in
1868 metabolites, which can be interpreted as missing
metabolites in AMD records.

Automatic Detection of Mislabeled Sites. Comparing
the annotated site search to the depth one search revealed
cases where SOMs were mislabeled (Figure 6). Across 20 736
phase I reaction records, the depth one search found a reaction
connecting reactant and product in 79.42% of cases. In
contrast, an annotated site search that limited rules to
generating structures by modifying at least one of the manually
annotated SOMs only had a performance of 78.36%. The
comparable performance of 79.42 and 78.36% implies that the
metabolic forest produces SOMs that are of similar validity as
those produced by manual labor. Furthermore, mistakes in the
human annotations are revealed by examining cases where the
depth one search found a solution, but the annotated-site-
limited search failed.

Accurate Generation of Quinone Structures. Accurate
quinone structure generation is an especially important task for
a metabolite structure predictor. Quinone species, including
quinone-imines, quinone-methides, and imine-methides, rep-
resent over 40% of reactive metabolites.”® Many drugs are
vulnerable to quinone formation due to the ubiquity of the
phenyl ring in drug design. Due to their abundance, quinone
formation in drug metabolism has been extensively studied
experimentally.105_109 Recently, we published the first study
that explicitly predicted quinone formation.”> However, that

https://dx.doi.org/10.1021/acs.jcim.0c00360
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Figure 4. Examples of success and failure reaction records from metabolism literature. Top: transformation pathways successfully found by the
metabolic forest, including a three-step reaction pathway of benoxinate,”® a two-step reaction pathway of flurazepam,”* and a one-step pathway of
zotepine.” Bottom: records where the metabolic forest failed to find a pathway between substrate and product, including a simultaneous
dealkylation and desulfuration of isofenphos,”® a ring opening of a risperidone metabolite,”” and a simultaneous glutathionation and hydroxylation
of a capsaicin metabolite.”® Experimentally observed metabolites are enclosed within boxes. Inferred sites of metabolism are circled. Records for
which no pathway was found linking substrate and metabolite are marked with red crosses.

model had the limitation—common to most previous
metabolism models—of only making predictions on the
input molecule, and not producing actual metabolite
structures.

For the present study, we designed a specific rule for
quinone structure prediction. To evaluate performance at
predicting quinone structures, we used the exact dataset from
our previous quinone study.45 Quinone formation reactions are
challenging to encode because they can involve a variety of
substituents and by definition entail a loss of aromaticity.
Nevertheless, we accurately modeled quinone formation using
a combination of SMARTS reactions rules and more fine-
coded chemical programming (Algorithm 1). To our knowl-
edge, this is the first published algorithm for predicting the
structure of quinones.

The algorithm finds quinone not only in simple cases but
also across aromatic systems spanning multiple rings (Figure
2). Across the 576 quinone formations reactions, the metabolic
forest finds a formation pathway 91.84, 91.84, and 76.22% of
the time, for depth three, two, and one searches, respectively
(Figure 7).

Limitations. The metabolic forest accurately produced the
metabolite structures across a large, literature-derived dataset

4709

of 20 736 phase I reaction records. Although diverse, this data
may have biases that limit our results. For example, many
short-lived intermediates are difficult or impossible to
experimentally detect. As a result, such transitory molecules
are likely underreported in metabolic studies. Due to our focus
on accurately reproducing literature-derived data, our current
tool may not be as well tuned to these underreported
intermediates.

Secondly, the search algorithm naively considers all possible
combinations of rules, without regard to biological patterns
that make some combinations more likely than others. For
example, the current method blindly mixes phase I and phase
II reactions, ignoring the well-known paradigm of redox
reactions often introducing functional groups for subsequent
conjugation reactions.”® Additionally, the search does not take
into account the connectivity distance between the sites
modified by subsequent metabolic steps. It would be logical to
start the search at each depth near the site most recently
modified, to reduce the number of false paths considered for
reactions that are highly correlated, such as hydroxylation
followed by quinone formation."

A third possible caveat is the risk of incorrect metabolite
structures in the data misinforming the design of the metabolic

https://dx.doi.org/10.1021/acs.jcim.0c00360
J. Chem. Inf. Model. 2020, 60, 4702—4716
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Figure 6. Across 20 736 phase I reactions, the depth one search found
a reaction connecting reactant and product in 79.42% of cases,
whereas the manually annotated sites only had a performance of
78.36%. By examining reactions solved by the depth one search but
not the annotated sites, labeling mistakes were revealed. Three
examples are shown, where the incorrect, manually annotated sites are
circled in red and crossed, and the correct sites uncovered by the
depth one search are circled in black. From left to right:
acetylisoniazid,102 tacrine,'> and (NS-21), a former drug candidate
for bladder disorders.'**

rules. The potential impact of this possibility on our reported
accuracies seems low because the large dataset size of 20 736
records made the effect of any single record negligible.
Furthermore, when constructing the metabolic forest, only a
small fraction of the data was inspected. It seems more likely
that incorrect or unorthodox metabolite structures resulted in a
performance underestimation. For example, one poorly
performing reaction type was glutathionation reaction because
glutathione was reported as several slightly different forms in
the data and therefore did match any product structure.
Explicitly encoding all of these glutathione forms would be
undesirable because it would unnecessarily expand the total

4710

number of possible structures at each depth and place undue
emphasis on a single reaction type.

Case Study. Building a bioactivation model by linking
models of metabolism*”**”” and reactivity*>''® was a primary
motivation for constructing an accurate method of metabolite
structure generation. The full construction and analysis of this
unified bioactivation model is beyond the scope of this study.
Nevertheless, to demonstrate the value of the metabolic forest,
we built a prototype implementation. In this system, we used
the explicit metabolite structures generated by the metabolic
forest to unite three, heretofore incompatible, models: the
previously discussed quinone formation model,* a model of
epoxidation,®® and a model of reactivity.””

The quinone formation and epoxidation models were
originally conceived as specialized metabolism studies, with
their respective focuses chosen because quinones and epoxides
together represent around 50% of all known reactive
metabolites.”""” However, classifying quinones and epoxides
as either reactive or nonreactive is a generalization because
reactivity is actually a continuum. For example, there are
naturally occurring epoxides''® and other small-molecule-
containing epoxides that are known to be nonreactive''” In
these cases, the presence of electron-donating groups on the
carbons in an epoxide often stabilized the motif, by reducing
the electron deficiency. Similarly, nearly identical quinones can
vary widely in their reactivity and toxicity.'"”* Consequently,
evaluating the reactivity of possible quinones and epoxides
enables a ranking of possible structures that may drive toxicity.

The quinone model predicts how likely quinones are to form
at both the site and molecule levels. Similarly, the epoxidation
model yields probabilistic scores for epoxide formation, also at
the site- and molecule level. The reactivity model predicts
reactivity to biological macromolecules, including DNA and
protein, as well as glutathione and cyanide, which are
frequently used experimentally to detect reactive mole-
cules.*®*3° To build our bioactivation model, we constructed
a pipeline where, for a given input molecule, all of the

https://dx.doi.org/10.1021/acs.jcim.0c00360
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structures of all possible epoxides and quinones were
generated, and these structures submitted to the reactivity
model. By multiplying the probabilistic metabolism scores
from the epoxidation and quinone models by the reactivity
scores, metabolites can be identified that are both likely to
form and likely to be reactive. In the future, we plan to
quantitatively use these bioactivation scores to predict reactive
metabolite formation, and to systematically evaluate its
performance at this task. Here, we highlight a few examples
where the metabolite predictor has generated hypotheses
about reactive metabolites that may be responsible for IADRs
(Figure 8).

The chemotherapy drug imatinib has been implicated in
several cases of idiosyncratic, severe hepatotoxicity.”'*!
However, no reactive metabolite has been detected.'** Our
models predict formation of a highly reactive quinone-methide.
Our quinone formation model® predicted formation of a
quinone-imide that is also predicted to be highly reactive by
our reactivity model.”” The potent nonopioid analgesic
metamizole was withdrawn from the market in several
countries, includin% the United States, due to cases of
agranulocytosis.lB_ *” The mechanism of this toxicity has
not been elucidated, although evidence has been found for an
immunoallergic origin, suggestive of a bioactivation mecha-
nism."** A cation radical has been observed in incubations with
myeloperoxidase,'* but without evidence of its formation in
vivo the culprit of metamizole remains an open question. Our
bioactivation model presents an alternative hypothesis: the
formation of a reactive quinone on metamizole’s pyrazolone
motif. Famotidine, a histamine H, receptor antagonist, has
been associated with unexplained idiosyncratic reactions,
including toxic epidermal necrolysis.”*° A reactive epoxide
forming on the thiazole within famotidine is a possible
explanation suggested by epoxidation and reactivity scores.

B CONCLUSIONS

This study established a validated, accurate tool for predicting
metabolic structures across one or several metabolic steps. Our
method combined simple rules encoded by reaction SMARTS
with novel algorithms for complex, resonance-structure-based
transformations, including quinone formation, hydrogenation,
dehydrogenation, and tautomerization. We validated the
metabolite structure predictor on a diverse collection of
20736 records from a literature-derived database. Beginning
with the substrate of each record, a breadth-first search
successfully found a transformation resulting in the exact
experimentally observed product 79.42, 88.43, and 88.77% of
the time when generating a metabolite tree limited to one, two,
or three successive rules, respectively. We also validated our
method on a previously published dataset of 576 quinone
formations,” producing the correct quinone structure with
accuracies of 76.22, 91.84, and 91.84% with searches of depths
one, two, and three, respectively. Our tool can also be used to
infer missing intermediate structures, and to automatically
label sites of metabolism. Most importantly, the metabolite
predictor enables integration of metabolism and reactivity
models to construct a bioactivation model. Until now,
metabolite structures were the missing link in that endeavor.
We constructed a prototype model that predicted novel
putative reactive metabolites for the drugs imatinib,
metamizole, and famotidine, each of which is associated with
IADRSs, the causes of which have never been elucidated. These
reactive metabolites are specific, testable hypotheses about the
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mechanism of their parent drug’s idiosyncratic toxicity. We
plan to comprehensively model bioactivation using the
metabolite predictor and expect that accurate enumeration of
possible metabolite structures will become a cornerstone of
many other future investigations.
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