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ABSTRACT: Drug metabolism is a common cause of adverse drug
reactions. Drug molecules can be metabolized into reactive metabolites,
which can conjugate to biomolecules, like protein and DNA, in a
process termed bioactivation. To mitigate adverse reactions caused by
bioactivation, both experimental and computational screening assays
are utilized. Experimental assays for assessing the formation of reactive
metabolites are low throughput and expensive to perform, so they are
often reserved until later stages of the drug development pipeline when
the drug candidate pools are already significantly narrowed. In contrast,
computational methods are high throughput and cheap to perform to
screen thousands to millions of compounds for potentially toxic
molecules during the early stages of the drug development pipeline. ‘.260]

Commonly used computational methods focus on detecting and

structurally characterizing reactive metabolite—biomolecule adducts or predicting sites on a drug molecule that are liable to form
reactive metabolites. However, such methods are often only concerned with the structure of the initial drug molecule or of the
adduct formed when a biomolecule conjugates to a reactive metabolite. Thus, these methods are likely to miss intermediate
metabolites that may lead to subsequent reactive metabolite formation. To address these shortcomings, we create XenoNet, a
metabolic network predictor, that can take a pair of a substrate and a target product as input and (1) enumerate pathways, or
sequences of intermediate metabolite structures, between the pair, and (2) compute the likelihood of those pathways and
intermediate metabolites. We validate XenoNet on a large, chemically diverse data set of 17 054 metabolic networks built from a
literature-derived reaction database. Each metabolic network has a defined substrate molecule that has been experimentally observed
to undergo metabolism into a defined product metabolite. XenoNet can predict experimentally observed pathways and intermediate
metabolites linking the input substrate and product pair with a recall of 88 and 46%, respectively. Using likelihood scoring, XenoNet
also achieves a top-one pathway and intermediate metabolite accuracy of 93.6 and 51.9%, respectively. We further validate XenoNet
against prior methods for metabolite prediction. XenoNet significantly outperforms all prior methods across multiple metrics.
XenoNet is available at https://swami.wustl.edu/xenonet.

B INTRODUCTION by conjugating to nucleophilic sites within DNA and protein
Adverse drug reactions are a limiting factor in the development through a process known as bioactivation. Conjugation to
of drugs and their distribution. Approximately 10—15% of proteins can lead to deleterious alterations in protein structure
adverse drug reactions are categorized as dose-independent, and folding that provoke immune response;é_g and inter-
idiosyncratic (idiosyncratic adverse drug reactions—IADRs) actions with nucleic acids can alter DNA structure or gene
and occur at very low frequencies of 1 in 10000 to 1 in expression in ways that invoke carcinogenicity and teratoge-
100000." As a result, IADRs are notoriously difficult to plan nicity.'>"! Though there are many ways that drug toxicity can
for because they cannot always be treated by simple dose arise following bioactivation, most studies focus on detecting
adjustments and can evade detection until the drug has gained precursors to and understanding the bioactivation process
increased exposure at large population levels that are not itself.

tractable in clinical trials. At least 17% of liver transplant cases
and 50% of acute liver failure cases can be traced to IADRs.>?
Even with regards to drugs that have been approved, drug
toxicity such as those caused by IADRs can result in significant
health consequences, including hepatotoxicity and drug-
induced liver injury, which can lead to drug withdrawal.”
Many IADRs are associated with the production of
electrophilic reactive metabolites, which may result in harm
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The risk of bioactivation can be allayed by the early
identification of reactive metabolites. Current experimental
approaches, such as trapping studies or covalent binding
studies, are geared toward detecting reactive metabolites or
their conjugated forms."”'® However, such methods are
resource intensive, time consuming, and can be expensive
and biased by experimental design choices, such as the type of
trapping agent used. In silico methods can operate at a higher
throughput and under shorter time scales. A common
computational approach is to try to predict the site on a
drug molecule where a reactive metabolite might form."
Reactive metabolite identification can then be followed up by
rational drug modification that avoids potential reactive
metabolite formation while retaining the desired pharmaceut-
ical effect of the now altered drug.”'*'*

However, there is a dearth of commonly used techniques
that can monitor sequential metabolic transformations, and
resulting intermediate metabolites, that are required to form a
reactive metabolite. This is an important task since the
majority of drug molecules require more than one metabolic
transformation, and therefore an intermediate metabolite, to
form a reactive metabolite.'> The fulfillment of such a goal
would reveal important intermediate metabolites that are
required to form reactive metabolites. Consequently, this
would open up additional avenues for preventing reactive
metabolite formation and subsequent IADRs, as one could
modify drug molecules to avoid these intermediates.

A recently published study highlights the need and the
ability to use in silico methods to identify intermediate
metabolites that are necessary to form reactive metabolites.'®
The authors identified an important intermediate metabolite
by combining a site of metabolism (SOM) model with a model
than can infer metabolite structures. Specifically, they
discovered that terbinafine (TBF), an antifungal drug known
to cause toxicity,'” forms a previously unidentified inter-
mediate, desmethyl terbinafine (TBF-D), which has since been
shown to be an important precursor in the formation of the
reactive metabolite TBF-A."® Further experimental investiga-
tions of TBF and TBF-D metabolism into TBF-A by P450
isozymes were later able to reveal the degree of involvement of
CYP2C9 and 3A4 in TBF’s metabolic clearance and
bioactivation potential."”** Knowledge of the intermediate,
TBE-D, provides a better mechanistic understanding of
reactive metabolite formation and could inform potential
modifications that would reduce the bioactivation potential of
TBF. However, this approach has not been generalized.
Instead, the author’s approach involved manual application of
separate models in an ad hoc manner to understand how TBF
is bioactivated.

In this work, we explore a generalized approach that
combines two types of models: site of metabolism (SOM)
models, which identify atoms, or bonds, which are liable to be
metabolized, and metabolite structure inference models, which
can infer the structures of potential metabolites formed during
the metabolism of a given molecule. With regard to SOM
prediction, there are several previously published phase-I SOM
prediction models that are freely available. SMARTCyp,
RSPredictor, SOMP, MetaPrint2D, FAME 3, Site of
Metabolism Estimator (SOME), and He et al. are a few
examples of the methods available.”’™>* We employ our
Rainbow XenoSite model, which was developed previously as
part of our ongoing effort to develop a collection of free, usable
metabolism and reactivity models, referred to collectively as
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XenoSite.”” Our motivation for doing so is that Rainbow
XenoSite, compared to the aforementioned models, is the only
model that produces well-scaled, probabilistic outputs in a
reaction-type specific manner that, in conjunction with
knowledge of the site of metabolism, allow for unambiguous
inference of the metabolite structures that a molecule is likely
to form.>* Furthermore, our prior work has also shown that
Rainbow XenoSite covers the largest proportion of known
human phase-I metabolic reactions and its coverage of reaction
types includes many important bioactivation reactions not
covered by the other models.

Comparatively, metabolite structure inference models are a
less explored space than SOM models. Previously published
and freely available methods worth noting include BioTrans-
former, RD-Metabolizer, SyGMa, and GLORY.>'* The
earliest approach of those listed, SyGMa, presents a rule-
based method for predicting the potential child metabolites
produced from a given parent metabolite.”> SyGMa’s reaction
rules cover both phase 1 and phase 2 metabolism and are
augmented by probability scores to allow ranking of the
predicted metabolites. SyGMa’s probability scores for reaction
rules are derived from statistical analysis on a large data set of
experimental metabolic reactions. A second method, BioTrans-
former, combines a knowledge-based approach with a machine
learning approach to predict small molecule metabolism across
a wide range of contexts, including CYP450-mediated
metabolism.>’ The former includes the use of MetXBioDB, a
biotransformation database of annotated, experimentally
derived metabolic reactions that informs a reaction knowledge
base for metabolite prediction. The latter involves use of
CypReact for CYP specificity prediction.”® In contrast,
GLORY accomplishes metabolite prediction without reliance
on metabolic reaction data sets and instead implements rules
derived from scientific literature and chemistry knowledge.**
GLORY also applies FAME 2 to enable filtering out potential
false-positive predictions and ranking of predicted metabolites
by their likelihood of occurrence.

We employ our own metabolite structure inference model,
called the Metabolic Forest, which we have previously
established and validated as an accurate tool for predicting
metabolic structures in comparison against RD-Metabolizer.>®
Similar to the aforementioned methods, Metabolic Forest uses
a rule-base approach for metabolite inference. However, an
elusive problem common to all of the above methods is the
generation of large numbers of false-positive metabolite
structures. Use of an SOM model in tandem with a metabolite
structure inference model can remedy this by allowing early
filtration of metabolites that would result from low-value
predictions and a basis for ranking the remaining predicted
metabolites in accordance to their likelihood of being
legitimate.

In this work, we propose an approach that combines our
Rainbow XenoSite and Metabolic Forest models to build
networks of metabolic transformations that include reaction-
specific SOM predictions and metabolism structure inference
across a set of phase-I metabolism rules. We also validate how
this method, referred to as XenoNet, can be used to infer
intermediate metabolites precluding formation of a given target
metabolite known to eventuate from a given parent molecule.
Furthermore, we can use Rainbow XenoSite to determine the
probability of each metabolic transformation and then calculate
the likelihood of observing a given metabolic pathway. Briefly,
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Figure 1. Metabolic network data set construction and overview of XenoNet. (A) Multiple experimentally observed reactions from the AMD can
be linked to an annotated network. Using these annotated networks, we can evaluate how well different metabolic network-generating algorithms
can infer observed intermediate metabolites. (B) XenoNet is a metabolic network predictor that, given a substrate and a target product as inputs,
can infer the metabolic pathways connecting two input molecules and the corresponding likelihood of each pathway. In XenoNet, the Metabolic
Forest algorithm is applied iteratively to generate a tree of potential pathways that span multiple metabolic transformations. During construction of
this tree, pathways between the starting molecule and a target molecule can be enumerated. The likelihood of each step in a pathway can then be
computed from the five-color predictions by Rainbow XenoSite. The five colors are used to allow for ease of use when visualizing the networks that
XenoNet generates. Each of the major groups corresponding to one of the five colors is further subdivided into more nuanced reaction-type classes
that are used to annotate the edges in the generated network. These more detailed edge annotations are accessible through the XenoNet network
object. XenoNet’s predicted metabolic pathways are stored using a graph-based data structure where each molecule is a node and each metabolic
transformation is an edge.

we also compare XenoNet’s ability to infer known metabolites structures. Figure 1A illustrates an example of how these
in comparison to GLORY, SyGMa, and BioTransformer. records are collated into an annotated graph. In this example,

one record may indicate that a substrate molecule (S)
B DATA AND METHODS undergoes a reaction that generates a metabolite (M). A

second record may indicate that (M) undergoes a reaction to
generate another metabolite (P). A third record indicates that
(S) is directly metabolized into (P). Therefore, these three
records can be linked to show that the substrate (S) is

Metabolic Network Data Set. To construct our
metabolic network data set, we used a previously described
data set that contains 20 736 in vitro and in vivo human phase-I
reaction records filtered from the Accelrys Metabolite

Database (AMD), a literature-derived database.’® Each connected to the downstream metabolite (P) through the
reaction record was classified into one of the five phase-I metabolite (M), serving as an intermediate node. At the end of
metabolism classes: stable oxygenation, unstable oxygenation, the network collation process, all networks that are induced
dehydrogenation, hydrolysis, and reduction reactions and subgraphs of another network are removed. The final data set
manually labeled with the site of metabolism (SOM). The contains 17 054 annotated metabolic networks with at least
final data set contains 10280, 5811, 2794, 3869, and 1590 one direct path connecting each substrate molecule to its
stable oxygenation, unstable oxygenation, dehydrogenation, recorded product. Each of the networks represents a unique
hydrolysis, and reduction reactions, respectively. Due to their substrate—product pair. Approximately 91% of the paths across
low prevalence, some phase-I reaction types such as all annotated networks require three or fewer metabolic
tautomerization, isomerization, rearrangement, radical forma- transformations. Although we cannot share the exact chemical
tion, hydration, deacylation, denitrogenation, and decarbon- structures from the proprietary AMD, we provide the AMD
ylation were not included in our data set. reaction records for each metabolic network in our data set in
These reaction records were converted into graph the “Metabolic_Network_Dataset.json” file.

representations where the nodes represent the substrates and Metabolic Network Generator XenoNet. We built
the products and the edges represent metabolic trans- XenoNet, a metabolic network predictor that, given a substrate
formations. These graphs were then linked together to and a target product as inputs, can infer the metabolic
construct networks based on shared nodes—identical chemical pathways connecting two input molecules and the correspond-
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Figure 2. XenoNet can infer the metabolic pathways connecting a substrate and a product from their structures in three steps. First, using
Metabolic Forest,’® a depth-first search scans across a space of possible metabolite structures for paths that terminate at the given product
metabolite. Second, the discovered paths are used to construct a new metabolic network with the input substrate and product as terminal nodes.
Third, Rainbow XenoSite® yields predictions on the metabolic transformation edges of the constructed metabolic network. As an example, we
show here how the process works when the model is given 1,3-butadiene (in solid-line box) and hydroxymethylvinyl ketone (in dash-line box) as its
substrate and product pair inputs. The search starts at 1,3-butadiene and explores as far as possible along a branch of metabolic transformations up
to a limited depth, before backtracking to continue the search along other branches (left). Only pathways that go from 1,3-butadiene to
hydroxymethylvinyl ketone are retained to construct a new metabolic network (right). Once all metabolites and directed edges linking them are in
the network, the network is passed into Rainbow XenoSite to compute the likelihood for each metabolic transformation, shown as the numbers
next to the edges.

ing likelihood of each pathway. Two previously developed, in- whereas the Metabolic Forest outputs a list of the inferred
house models are combined and augmented to develop metabolite structures it enumerates, XenoNet encodes its
XenoNet. The first is Rainbow XenoSite, a deep learning inferred metabolite structures, along with edge-level data such
phase-I metabolism model that, given a molecule as input, can as SOM predictions, in a network object. This network object
accurately predict sites of metabolism (SOMs) for each of the supports additional functionality, such as the ability to
20 phase-I reaction types via five reaction classes.”® In the compute the likelihoods of paths and metabolites in the
current work, we utilize the same set of transformation rules network. In addition, the network object readily supports
that define the reaction classes and reactions types in Rainbow conversion to a NetworkX MultiDiGraph class object for
XenoSite. The second is the Metabolic Forest, which takes the further utility. Finally, XenoNet incorporates a depth-first

substrate molecule as input and infers possible metabolite search strategy that yields much lower memory requirements

. 36 L.
structures that are one metabolic step away. .In addition to compared to the breadthfirst search strategy employed by
inferred metabolite structures, the Metabolic Forest also Metabolic Forest. XenoNet was implemented in Python with

outputs the. specific SOMs and the corresponding metabolic the 2018.09.03 release of RDKIT.>” Seven different variants of
transformations that act on those SOMs to produce the

inferred metabolite. Metabolic Forest infers metabolite
structures of a given substrate using breadth-first searches
and transformation rules encoded through a combination of
reaction SMARTS, resonance pair rules, and resonance
structure rules.

Briefly, in XenoNet, the Metabolic Forest algorithm is
applied iteratively to generate a tree of potential pathways that
span multiple metabolic transformations (Figure 1B). During
construction of this tree, pathways between the starting
molecule and a target molecule can be enumerated. Through

XenoNet were implemented, and the best variant was selected
as the final version. The detailed descriptions of each step are
in the following sections.

The Naive XenoNet Variant. The first XenoNet variant is
a naive model that employs a brute-force approach to network
construction, which enumerates all possible paths between the
starting molecule and the target molecule. Given a query
consisting of a substrate—product pair of molecules, Metabolic
Forest is iteratively applied to construct a metabolic tree of
successive intermediates in a depth-first manner until a

the application of Rainbow XenoSite, the likelihood of each pathway connecting the queried pair is found or the depth
step in a pathway can then be computed. XenoNet’s weighted limit is reached. Next, all discovered paths from the substrate
metabolic pathways are stored using a graph-based data to the target product are used to construct a new metabolic
structure where each molecule is a node and each metabolic network. Once the search completes, and the structures in the
transformation is an edge. Thus, unlike the Metabolic Forest, network are known, the whole network is given as input to
XenoNet not only infers metabolite structures but also predicts Rainbow Xenosite. In this step, each transformation edge is
the likelihood of the metabolic transformation that the input given a prediction score depending on the reaction class that it
molecule undergoes to form the inferred metabolite structures, belongs to. As an example, we show how the process works

3434 https://dx.doi.org/10.1021/acs.jcim.0c00361
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Figure 3. Top-N and substructure matching heuristics. To limit the branching factor of potential metabolic trees, we use top-N and substructure
matching heuristics. As an example, let us consider a pair of a substrate (in solid-line box) and a target product (in dash-line box), as shown above.
For the first generation of metabolites, XenoNet discovers seven structures, one of which is our target product. However, only the target product
and structures that meet top-N and/or substructure heuristics would be considered in the next step of the search and the remaining metabolites
would be ignored. The top-N heuristic filters for metabolite structures that receive N highest scores. The numbers next to the arrows are scores
assigned by Rainbow XenoSite for the corresponding metabolic transformation. Only two metabolites with the scores of 0.60 and 0.4S pass the
Top-2 filter. The substructure matching heuristic filters for metabolite structures produced via transformation at sites expected to lead to the target
product. In the substrate structure, the site of the structural difference between the substrate and target compound, i.e., the site of metabolism, is
circled in red. In each metabolite structure, the site of structural difference between the metabolite and the substrate is circled in red if it contains
the site of metabolism and gray if it does not. Only two metabolites with red circles pass the substructure matching filter. Different combinations of
top-N and substructure matching heuristics are used to construct six XenoNet variants.

when the model is given 1,3-butadiene and hydroxymethylvinyl rence is among the highest. Using Rainbow XenoSite, we
ketone as its substrate and product pair inputs (Figure 2). calculate the probabilities of all metabolic transformations that

In addition to detecting and removing cycles, such as the parent metabolite may undergo and only generate the child
repeatedly adding and removing a hydroxyl group, from the metabolite structures that correspond to the top-N metabolic
network, we prevent wasteful computations by using two transformations.
parameters: the depth limit and the time limit. The depth limit The top-N heuristic limits the tree to grow as x™, where x is
parameter specifies the maximum length of the searched paths. the number of steps in a pathway and N is the number of
The time limit parameter specifies the maximum amount of metabolic transformations that can be explored for each
time that the network generation cannot exceed. During path molecule. Without this heuristic, N can effectively be on the
enumeration, we construct a separate metabolic tree to keep order of hundreds of metabolic transformations. Furthermore,
track of all pathways that connect the queried pair. If the the top-N heuristic has two forms: reaction-agnostic top-N and
metabolic network exceeds its allotted time, the current state of reaction-specific top-N. In reaction-agnostic top-N, the top-N
the partially generated network is saved. This brute-force child metabolites are selected to explore in the next step, as
approach is only a baseline to demonstrate the necessity of previously discussed. However, reaction-agnostic top-N
clever algorithms to make the problem tractable. assumes that the probabilities generated by the Rainbow

Notably, network generation does not require a defined XenoSite for each of the 20 reaction types are comparable,
product molecule for the search to terminate. Instead, it can which is an oversimplification. Therefore, we also employ a
also function in cases where only a starting molecule is given. reaction-specific top-N, where each of the 20 reaction types is
We can input only a substrate molecule and XenoNet will still considered separately. In the reaction-specific top-N, the child
generate all paths of metabolic transformations within the metabolites produced from the top-N transformations within
limits of its phase-I rule set and defined user parameters such each of the reaction types are eligible for further exploration.
as the depth limit. Thus, we can also compare our method to For example, when N is set equal to 3, the top-3 subsequent
other tools that only try to infer metabolites yielded from a metabolites formed via each reaction type would be considered
starting molecule and do not try to enumerate paths with a for the next step, allowing for a maximum of 60 child
defined end state. metabolites to be considered in the next step.

Heuristic XenoNet Variants. In addition to the naive One final variant of the top-N heuristic, hereon referred to as
variant, we develop six other XenoNet variants. To limit the the optimal thresholds heuristic, limits the acceptable child
branching factor of potential metabolic trees, we use different metabolites based on whether the metabolic transformation
combinations of a top-N heuristic and a substructure matching required to produce them is above a probability threshold. We
heuristic in six other variants of XenoNet (Figure 3). used a separate threshold for each of the five major reaction

The top-N heuristic drives the metabolic network to explore classes—stable oxygenation, unstable oxygenation, dehydro-
only metabolic transformations whose probability of occur- genation, hydrolysis, and reduction. To define the thresholds,
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we used the optimal point on the cross-validated receiver-
operating curves (ROC) curves computed from Rainbow
XenoSite’s atom-level reaction predictions on its training data
for each reaction class.®® The threshold was computed to
optimize both sensitivity and specificity using the Youden
index.”® For example, a metabolic transformation with the
epoxidation reaction type must have a score greater than the
stable oxygenation reaction class threshold for the produced
child metabolite to be retained for further processing at the
next step of the search.

In the substructure matching heuristic,c XenoNet only
generates intermediate metabolite structures that result from
applying reaction rules to sites expected to lead to the product
metabolite. Concretely, metabolic transformations are only
computed for sites where the current intermediate metabolite
being assessed differs from the product metabolite, as well as
their immediately neighboring sites. For instance, if a
substrate—product pair only differs by hydroxylation at a
single site, then the reaction rules will only be applied to that
differing site and its adjacent sites, rather than every site in the
substrate. Substructure matching can be enhanced by allowing
a parameter for the radius from sites of differences. As
described previously, the radius is one, i.e., we find the sites
where differences are present and only run the SOM model on
those sites and their adjacent sites. The radius hyperparameter
for substructure matching was also evaluated for radii of 2 and
3 (Table S1), but these variants did not perform better than
substructure matching with a radius of 1. Ultimately,
substructure matching was evaluated with respect to the
other heuristics with a radius of 1 only. Some reaction rules,
such as dehydrogenation, can operate on two distinct sites in a
molecule. If the reaction rule specifies two sites, then both sites
must be in the set of valid sites derived from the substructure
matching heuristic.

However, both the top-N and the substructure matching
heuristics have weaknesses. The top-N heuristic is greedy. If a
high probability transformation follows a low probability
transformation, the pathway would be missed because the
first low probability transformation would be skipped. On the
other hand, substructure matching treats every child metabolite
as equally likely to form in the subsequent transformation.
Additionally, it does not account for initial reactions that occur
at a site that lies outside the common substructure, even if a
reaction at that site has a high probability and could eventually
lead to the target via further downstream reactions. Combining
both approaches could help ameliorate their specific
deficiencies. In the combination approach, the set of child
metabolites that is eligible for further exploration is derived
from the union between the set of children produced by
individual application of the substructure heuristic and the set
of children produced by individual application of the top-N
heuristic.

In summation, the six additional XenoNet variants include
top-N reaction-agnostic, top-N reaction-specific, optimal
thresholds, substructure matching, substructure matching in
combination with top-N reaction agnostic, and substructure
matching in combination with top-N reaction specific.

It should be noted that there is a speed optimization for
variants of the model that employ the top-N heuristic or
optimal thresholds heuristic. Since evaluating the top-N child
metabolites for further search exploration involves predictions
from Rainbow XenoSite, those predictions can be cached.
Though at the expense of increased memory cost, saving the

3436

predictions for a given metabolite in anticipation of that
metabolite potentially involved in a valid pathway prevents
having to execute Rainbow XenoSite more than once on each
metabolite in the network. If a path is found between the start
and target molecules, then the path, along with its cached
predictions, can be stored in the network.

Metabolite Scoring Algorithm. Several of the metrics
used for evaluating our models require a way to rank the
relative importance of metabolites in a given network. Thus,
except for the substrate that is always assigned a score of 1.0,
we calculate metabolite scores for all other compounds in the
network through three steps. First, we start with the raw score
WM, that Rainbow XenoSite assigns to the metabolic

transformation between a metabolite M; to one of its children
M, (Figure 4a). Second, the raw score wy_y, is normalized

a Unnormalized Predictions
o eoe8
N0z 005 —
m A“ Cc— DA'
A~_os ¥~
b Normalized Predictions

007
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Figure 4. Metabolite score. To rank the relative importance of
metabolites in a given network, we calculate metabolite scores. There
are three steps in this process. (a) First, each metabolic trans-
formation in the network is assigned with a raw prediction by
Rainbow XenoSite. (b) Second, the raw prediction is normalized
using eq 1. (c) Third, the substrate is assigned a score of 1.0, and
downstream metabolites are assigned with scores computed using eq
2. Because a node can only be scored after all of its parents have been
scored, the third step is carried out in multiple layers. The dashed-line
dividing the network into segments corresponds to the computation
of the metabolite scores for subsequent layers over the network. On
the first layer, for example, scores could be computed for A. The
computed score for A, displayed as numbers adjacent to each
metabolite, is 0.25. The number of layers required to compute all
metabolite scores is equal to the path of maximum length. The
maximum length path in this network requires five steps. Computing
metabolite scores for all metabolites in the network shown required
five layers.

over all metabolic transformation from M; to its children
(Figure 4b)

Wh— M,

WM,-»Mk = Z ”
Me Mjclnldren M—M, (1)

Third, the metabolite score Fy, is a weighted sum of the

normalized W), _.,, where M; is one of the parents of M;

Z Fy, X WM‘—>M}
M1 EM})JI’Q"IS (2)

Fy =

]
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Figure S. Time cost varies greatly between the seven XenoNet variants. In this comparison, each method was allotted 30 min for network
generation of each substrate—product pair at a depth limit of three steps from the substrate. (Top) Across 1024 substrate—product pairs, only the
substructure matching, top-N specific, and top-N agnostic variants can produce above 70% fully generated networks within the 30 min allotted
time. In the same allotted time limit, the optimal thresholds heuristic fully generated almost 50% of the networks. In contrast, while the naive and
the combination variants are the least restricted in terms of the metabolite structures generated, they are only able to produce at most 20% fully
generated networks within 30 min. (Bottom) A similar trend is found when comparing the run time distributions. The substructure matching, top-
N specific, and top-N agnostic variants, on average, take less than 10 min to generate a network. The time distribution for the naive and the
combination variants is much broader, and many runs hit the 30 min timeout before producing a fully generated network.

Because a node can only be scored after all of its parents have B RESULTS AND DISCUSSION

. . . . . In the following sections, we examine the inner workings of
been scored, the third step is carried out in multiple layers & ’ &

XenoNet, our metabolic network predictor. First, we compared

(Figure 4c). the seven variants of XenoNet on a randomly sampled subset
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Figure 6. Path recall calculation. Path recall is a metric designed to measure how well a model captures annotated paths. Here, we show how path
recall is calculated for a hypothetical data set of five substrate—product pairs. For each substrate—product pair, a predicted graph is generated within
a depth limit of 3. An annotated path from the substrate to the target product is considered as being captured if (1) all of its nodes are contained in
a predicted path and (2) the order of traversal through these nodes is the same in the annotated and predicted paths. For each pair of substrate and
product molecules, the proportions of annotated paths of a certain length that were captured are calculated. For each length classification, the path
recall of a test set is the average of the captured proportions at that specific path length across the entire test set.

of our metabolic network data set to identify the optimal
model. The most efficient XenoNet variant was chosen as the
final XenoNet model. Second, we assess the performance of
the final XenoNet model on the full metabolic network data
set. Third, we compare XenoNet to prior work on the task of
predicting metabolite formation with respect to phase-I
metabolism.

Comparison Between Metabolic Network Variants.
The main goal of XenoNet is to enumerate and assign
prediction scores to sequences of metabolic transformations
(edges) and intermediates (nodes) in the pathways that
connect a given input substrate—product pair. We generated
seven XenoNet variants and wanted to select the best variant
as our final model. However, the time cost of producing
networks poses a significant computational challenge when
running each method across the full metabolic network data
set. Inferring pathways of depth 3 or higher, along with model
predictions, can take a long time. As such, it is infeasible to run
each XenoNet variant on the full data set. Instead, we
randomly sample from our full data set a subset of 1024
substrate—product pairs to compare the model variants. In
addition to the naive XenoNet that uses no heuristics, the
other six variants employ either substructure matching, top-N
heuristics, or a combination of both. The choice of heuristic
influences the paths that are enumerated from the substrate
molecule to the product molecule. Consequently, heuristic
choice influences the presence of an edge in the predicted
graph but does not influence the scoring of the edges provided
by the Rainbow model. As such, metrics for comparing
performance between heuristics focused on the time cost of
network generation, path recall, intermediate metabolite recall,
and intermediate metabolite recovery. Metrics for comparing
the relevance of edge predictions during metabolic network
construction were not compared. The model variant with the
best performance on this subset would be the final XenoNet
model for analysis on the full data set.

3438

Prior to comparing distinct variants, we first tuned the N
hyperparameter for the top-N variants. As N increases, the time
cost increases. Preferably, we want the lowest value of N that
does not result in a significant performance decrease. We
increased the value of N until we hit a value whose
performance increase based on metrics of path recall and
intermediate recall, which will be discussed in detail in the
following sections, was no longer significant. We then selected
the value of N preceding this drop in significance. Significance
between the current top-N variant and its immediately
preceding variant was evaluated using a paired t-test. For the
reaction-specific top-N, the hyperparameter N was incre-
mented by 1 for each evaluation. The full range of assessed
values was for N equal to 2, 3, 4, 5, and 6. The value of N
chosen for this heuristic was N equal to 5. For reaction-
agnostic top-N, the hyperparameter N was incremented by S
for each evaluation. The full range of assessed values was for N
equal to 5, 10, 15, 20, and 25. The value of N chosen for this
heuristic was N equal to 20. The optimal value of N for each of
the top-N variants was used for both of their corresponding
heuristic combination variants.

Time cost. An effective algorithm would be able to quickly
identify a pathway to known metabolites in all cases and
identify known intermediate metabolites. A brute-force, depth-
first search alone is not tractable since the time complexity of
searching the metabolic forest is O(n%), where n is the number
of metabolites for a given molecule and d is the depth of the
tree—the number of metabolic steps that is allowed between
the starting metabolite and the target metabolite. In some
instances, n can be on the order of 10 In this comparison,
each method was allotted 30 min for network generation of
each substrate—product pair at a depth limit of three steps
from the substrate. In the same allotted time limit, the optimal
thresholds heuristic fully generated almost 50% of the
networks. Across 1024 substrate—product pairs, only the
substructure matching, top-N specific, and top-N agnostic

https://dx.doi.org/10.1021/acs.jcim.0c00361
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speed up network generation at the cost of constraining the set of possible child metabolites. The constraining factor grows exponentially as the

path length grows.

variants can produce above 70% fully generated networks
within the 30 min allotted time (Figure S, top panel).

In contrast, while the naive and the combination variants are
the least restricted in terms of the metabolite structures
generation, they are only able to produce at most 20% fully
generated networks within 30 min. A similar trend is found
when comparing the run time distributions (Figure S, bottom
panel). The substructure matching, top-N specific, and top-N
agnostic variants, on average, take less than 10 min to generate
a network. The time distributions for the naive and the
combination variants are much broader, and many runs hit the
30 min timeout before producing a fully generated network.
For applications where run time cost needs to be conserved,
the substructure matching, top-N specific, and top-N agnostic
XenoNet variants may be the most optimal. Nevertheless, a fast
method is not useful if it cannot correctly identify known
intermediate metabolites. We hypothesize that the combina-
tion methods traverse more of the metabolite space for each
partially generated network than the naive method. We test
this hypothesis in the following sections using path recall,
intermediate metabolite recall, and intermediate metabolite
recovery metrics.

Path Recall. Path recall is a metric designed to measure how
well a model captures annotated paths (Figure 6). Given an
input substrate—product pair, a model would output a graph
with paths that lead from the substrate to the product. Ideally,
these predicted paths would be the same as the annotated
paths that were derived from the literature. However,
depending on the various experimental details, annotated
paths may miss some intermediates, especially short-lived and
reactive metabolites like epoxides or quinones. In contrast,
predicted paths consistently include even short-lived metabo-
lites because they are built with fixed and comprehensive
reaction-rule sets. Consequently, an annotated path from the
substrate to the target product is considered as being captured
if (1) all of its nodes are contained in a predicted path and (2)

the order of traversal through these nodes is the same in the
annotated and predicted path. The paths vary from a length of
one, ie., a direct path linking the substrate to the product, up
to the depth limit specified during the generation of the
predicted network. For each pair of substrate and product
molecules, the proportions of annotated paths of a certain
length that were captured are calculated. For each length
classification, the path recall of a test set is the average of the
captured proportions at that specific path length across the
entire test set.

The length-specific path recalls were evaluated over all
metabolic networks in the test set (Figure 7). All 1024
networks contain annotated paths with a length of 1, but only
60 and 24 of these networks contain annotated paths with a
length of 2 and 3, respectively. For all methods, the path recall
decreases as the path length increases. This is expected since
the longer a path gets, the probability that a model generates
all of its intermediates and places them in the correct order
diminishes.

No single method has the highest length-specific path recall
across all three path lengths. While heuristic approaches
capture shorter-length annotated paths better, the naive model
is superior in capturing longer-length annotated paths. For
example, at a path length of 1, both combination approaches
perform best with a path recall of 0.89. For a path length of 2,
the top-N reaction-specific combination approach performs
best with a path recall of 0.44. For a path length of 3, the naive
method performs best with a path recall of 0.26. The
performance trend highlights the trade-off between employing
heuristics to speed up network generation at the cost of
constraining the set of possible child metabolites. The
constraining factor grows exponentially as the path length
grows. Though the naive method generally takes the longest
time to iterate over all possible child metabolites branching out
from a given parent metabolite, it has the highest
expressivity—the greater the variety and quantity of metabo-

3439 https://dx.doi.org/10.1021/acs.jcim.0c00361
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Figure 8. Intermediate metabolite recall calculation. The intermediate recall is a metric designed to measure how well the model can infer
experimentally observed intermediates, compounds on the paths from the substrate to the target product. Here, we show how the intermediate
recall is calculated for a hypothetical data set of five substrate—product pairs. For each substrate—product pair, a predicted graph is generated within
a depth limit of 3. For each input substrate—product pair, the proportions of experimentally observed intermediates that can be inferred in the
predicted graph of certain minimal depth are calculated. For each minimal depth classification, an intermediate recall of a test set is the average of

these depth limit-specific proportions across the entire data set.
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Figure 9. Combined substructure matching and top-N specific heuristic model has the highest intermediate metabolite recall across all depths.

lites it can infer. If network generation were allowed to run
without a time limit, the naive method would be expected to
have the best performance. In contrast, each heuristic makes
certain assumptions about the importance of child metabolites
to eventuating into the product metabolite. As the path length
increases, the constraints imposed by the heuristic compound
over each set of child metabolites produced at each step in the
path. Eventually, the heuristic’s trade-off worsens performance
relative to the naive method.

It is not yet apparent which method achieves an optimal
trade-off. However, the methods that have the highest
constraints—both top-N methods, the substructure matching
method, and the optimal thresholds method—tend to have

lower path recall. Finally, each pair of approaches that use
some form of the top-N heuristic perform better or equivalent
when the heuristic uses the top-N specific form compared to
the top-N agnostic form.

Intermediate Metabolite Recall. Since most current
experimental approaches are designed to identify and
characterize only the reactive metabolite, they are liable to
miss important intermediate metabolites. Identification of
intermediate metabolites could help in the generation of
hypotheses for how a given drug molecule could be modified
to be less likely to form the intermediate metabolite. In effect,
such a modification could prevent the further formation of the
reactive metabolite.

3440 https://dx.doi.org/10.1021/acs.jcim.0c00361
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Figure 10. Recovery rate calculation. Here, we show how the recovery rate is calculated for a set of three hypothetical metabolic networks. (Left)
Predicted metabolic networks with a depth limit of one of three different substrates, S;, S,, and S;, and their known metabolites are shown.
Metabolites M that are both predicted and experimentally observed are in darker gray. Metabolites M that are predicted but not experimentally
observed or vice versa are in lighter gray. (Right) The proportion of networks that have fractions of known metabolites predicted by the model
above a certain threshold is computed. In our hypothetical database of three metabolic networks, 100% of substrates have at least 0—20% of their
known metabolites predicted, and 66.7% of the substrates (S, and S,) have at least 60% of their known metabolites predicted. Only 33.3% of the
substrates (S;) have at least 70% of their known metabolites predicted.

Table 1. Intermediate Metabolite Recovery Rate of XenoNet Variants. The Combined Substructure Matching and Top-N
Reaction-Specific Variant is the Best Model across Thresholds®

fraction of known intermediates predicted

method 0.1 0.2
naive 0.57 0.57
substructure matching, top-N reaction specific 0.62 0.62
substructure matching, top-N reaction agnostic 0.60 0.60
substructure matching 0.57 0.55
top-N reaction specific 0.57 0.57
top-N reaction agnostic 0.52 0.51
optimal thresholds 0.58 0.50

“The naive model is also competitive at thresholds ranging from 0.6

0.3
0.57
0.62
0.60
0.55
0.57
0.49
0.44

to 1.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.54 0.54 0.49 0.49 0.49 0.49 0.44
0.59 0.59 0.49 0.49 0.49 0.49 0.44
0.57 0.57 0.46 0.44 0.44 0.44 0.40
0.51 0.51 0.41 0.40 0.40 0.29 0.27
0.57 0.56 0.46 0.41 0.38 0.35 0.35
0.44 0.41 0.35 0.30 0.30 0.30 0.30
0.44 0.44 0.40 0.37 0.37 0.37 0.37

The highest values in each threshold are bolded.

The intermediate recall is a metric designed to measure how
well the model can infer experimentally observed intermedi-
ates—compounds on the paths from the substrate to the target
product (Figure 8). The intermediate recall is depth limit-
dependent. To infer a certain annotated intermediate, a
predicted network needs a minimal depth limit. As an example,
for an intermediate with a specified minimum depth of 2, any
method for predicting a network that potentially contains a
path that both infer the intermediate and terminate at the
target product would need to have the depth limit set to 2 at
minimum. Thus, for each input substrate—product pair, the
proportions of experimentally observed intermediates that can
be inferred in the predicted graph of certain minimal depth are
calculated. For each minimal depth classification, an
intermediate recall of a test set is the average of these depth
limit-specific proportions across the entire data set.

Among the randomly sampled 1024 test set substrate—
product pairs, there are 60, 82, and 97 annotated networks that
contain intermediates that require XenoNet’s depth limit to be
set to, at minimum, 2, 3, and 4 or more, respectively. There are
516, 756, and 1164 metabolites in the 60, 82, and 97 annotated
networks, respectively. The depth-specific intermediate recalls
were computed over these 60, 82, and 97 annotated networks
(Figure 9).

For all methods, the intermediate metabolite recall decreases
as the minimum depth required to reach the intermediate
metabolite increases. This phenomenon is consistent with the
fact that while the chemical diversity of annotated graphs
would vary greatly depending on experimental conditions,
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predicted graphs strictly follow a set of transformation rules.
Because of such difference in granularity, the discrepancy
between the annotated graphs and predicted graphs grows
exponentially with the depth of the networks.

The combined substructure matching and top-N specific
heuristic model has the highest intermediate metabolite recall
across all depths. For this variant, the intermediates metabolite
recalls are 0.49, 0.39, and 0.27 for networks of depths 2, 3, and
4 or more, respectively. The naive model, in contrast, only
achieves intermediate metabolite recalls of 0.47, 0.36, and 0.25
for networks of depth 2, 3, and 4 or more, respectively. Other
models have even lower intermediate metabolite recalls
(Figure 9). The result is further evidence that the combined
substructure matching and top-N specific heuristic mode are
the optimal XenoNet variant that can decrease its time cost for
inferring metabolites without hampering its ability to infer
known metabolites.

Intermediate Metabolite Recovery. To measure the ability
of a model to capture known metabolites, we use the recovery
rate metric. The recovery rate is the proportion of networks
that have fractions of known metabolites predicted by the
model above a threshold (Figure 10).

We assess the intermediate metabolite recovery rate of all
seven XenoNet variants on the randomly sampled 1024
network subset (Table 1). The combined substructure
matching and top-N reaction-specific model is the best
model across all thresholds. The naive model is also
competitive at thresholds ranging from 0.6 to 1. Both of

https://dx.doi.org/10.1021/acs.jcim.0c00361
J. Chem. Inf. Model. 2020, 60, 3431—-3449
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Figure 11. XenoNet accurately predicts metabolic networks. Performance of XenoNet across the full metabolic network data set on the same
metrics assessed during the comparison between all heuristics on the subset of 1024 networks. (A) Path recall stratified across paths of length 1, 2,
and 3. (B) Intermediate metabolite recall stratified across minimum network depth limit required to reach the intermediate metabolite of 2, 3, and
4 or more. (C) Intermediate metabolite recovery across recovery rate thresholds of 0.1 to 1. The results for all three plots are close to the initial
results for each metric when validated on the subset of 1024 samples and supports that the comparison between the XenoNet variants generalizes
to performance on the full data set.
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Figure 12. Path ranking calculation. This metric is designed to measure how well the predicted path with the highest likelihood of traversal
corresponds to a known path in the annotated graph. Here, we show how path ranking is calculated for a hypothetical data set of five substrate—
product pairs. The likelihood of each predicted pathway is the logarithmic sum over the scores that Rainbow XenoSite assigns to the metabolic
transformations in that pathway. We then rank all predicted pathways in a given network by their likelihoods. If the highest-likelihood path of a
given network has an exact match in the annotated path set, then that network is assigned a score of 1. Otherwise, that network is assigned a score

of 0.

these methods can infer all intermediate metabolites in 44% of
the networks.

Performance on the Full Metabolic Network Data
Set. Comparisons between variants of metabolic network
construction were drawn on a small fraction of our metabolic
network data set. From these comparisons, we selected the
best-performing variant, the combined substructure matching,
and top-N reaction-type specific heuristic model, to run on our
entire data set of 17 054 metabolic networks. Networks were
generated with a depth limit of 3 and a max time limit of 30
min per network.

Network Coverage, Path Recall, Metabolite Recall, and
Metabolite Recovery. In terms of coverage, 2804 of the
networks reached completion within the 30 min allotted for
network generation. The partial network states reached by the
remaining 14 250 networks were also preserved for analysis. In
total, 14 882 of the networks found at least one path between
the substrate—product pair. One thousand four hundred and
ninety networks timed out at the 30 min limit before finding
any valid paths between the substrate and the target product.
The remaining 673 of the networks reached completion within
the time limit but did not find any valid paths. In total, the
total time required to generate networks for the full metabolic
network data set was approximately 468 000 min.

We also evaluate the final XenoNet’s ability to infer known
pathways and intermediates between a given substrate—
product pair of molecules on the 17054 pairs using path
recall, intermediate metabolite recall, and intermediate
metabolite recovery metrics (Figure 11).

First, we assess path recall. In our data set, all 17054
networks contain annotated paths with a length of one, but
only 817 and 240 of these networks contain annotated paths
with a length of two and three, respectively. The path recall for
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path lengths of one, two, and three steps is 0.88, 0.46, and 0.26
across 17054, 817, and 240 networks, respectively (Figure
11A). Examples of paths that were successfully elucidated are
highlighted in Figure S9, along with the examples for which a
valid path was not found. XenoNet’s path recall for a path
length of 1 is comparable to the accuracy of Metabolic Forest
(88.4—88.8%).>° This result is expected because, despite
aiming at different tasks, the two models use the same rule set
and their data was built using the same set of AMD reactions.
XenoNet’s path recall at a path length of 1 is only slightly lower
than the path recall assessed for Metabolic Forest, which can
be attributed to the heuristics limiting the extent of the
chemical transformation space.

Second, we asses intermediate recall. In our data set, there
are 817, 1041, and 1143 annotated networks that contain
intermediates that require XenoNet’s depth limit to be set to,
at minimum, 2, 3, and 4 or more. XenoNet’s depth-specific
intermediate metabolite recalls at depth limits of 2, 3, and 4 or
more are 0.46, 0.38, and 0.30, respectively (Figure 11B).
Unsurprisingly, there is a drastic drop-off in intermediate
metabolite recall when going to metabolites that would require
a minimum depth limit of greater than 3 to reach. Since
XenoNet’s depth limit parameter was set to 3, we expect low
recall for intermediates, which, based on their annotated graph,
would require a minimal depth limit of 3 to locate.

Recall that the path recall for paths of length one, two, and
three steps over the subset of 1024 networks was 0.89, 0.44,
and 0.18 using the same heuristic. Furthermore, the
intermediate recall for minimum network depths of two,
three, and four or more metabolic steps over the subset of
1024 networks were 0.49, 0.39, and 0.27. It is reassuring that
the recall metrics computed over the subset of 1024 networks
translated to recall evaluation over the full data set. Most of the

https://dx.doi.org/10.1021/acs.jcim.0c00361
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Table 2. Comparison between XenoNet and a Random Model

highest-likelihood path in
observed paths (%)

unmodified weights 93.6 519
randomly permuted 61.8 319
weights

top-one intermediate
metabolite (%)

top-two intermediate top-three intermediate average
metabolite (%) metabolite (%) AUC (g%)
66.2 77.5 78.7
46.4 60.7 62.5

recall metrics are similar in value, with more notable increases
in performance on the full data set for depth 3 path recall and
depth 2 intermediate metabolite recall. Regardless, the results
on the whole metabolic network data set are broadly consistent
with the results across the subset of data used to compare
various heuristics in the previous section.

Last but not least, we assess XenoNet’s performance in
regard to intermediate metabolite recovery on the full data set.
The recovery rate only drops ~13% from ~75% at 0.1
threshold to ~62% at 1.0 threshold (Figure 11C). Inversely,
25% of networks (2163) found O of the known intermediate
metabolites. About half of these 25% networks are a result of
networks that could not find any valid paths.

Path and Metabolite Rankings. The ability to enumerate
multiple metabolites and metabolic pathways alone is useful,
but not enough for triage purposes. Knowing the likelihood of
each metabolite or pathway would help differentiate between
true positives and false positives. Ideally, an excellent metabolic
network generator would always be able to assign exper-
imentally observed pathways or metabolites with higher
likelihood than not-observed pathways or metabolites. The
more frequently the model assigns the highest probability to
pathways/metabolites that have been observed, the more
confident users would be that, when applied to new data, the
highest-likelihood pathway and metabolite would be desig-
nated to a pathway and metabolite with a high chance of
existing. In this section, we explore how well the XenoNet
model would predict experimentally observed metabolites and
pathways with higher likelihood than not-observed metabolites
and pathways.

The path ranking metric is designed to measure how well the
predicted path with the highest likelihood corresponds to an
annotated path (Figure 12). Here, the likelihood of each
predicted pathway is the logarithmic sum over the scores that
Rainbow XenoSite assigns to the metabolic transformations in
that pathway. We then rank all predicted pathways in a given
network by their likelihoods. If the highest-likelihood path of a
given network has an exact match in the annotated path set,
then that network is assigned a score of 1. Otherwise, that
network is assigned a score of 0. The path ranking of a set is
the average score across all networks in the set (Figure 12).
Note that, unlike in the assessment of the path recall metric,
the predicted path with the highest likelihood is assessed for an
exact match—containing the same set of metabolites in
identical order—in the annotated path set. This is because
every annotated network contains a one-step path that directly
links the substrate to the product, and every captured path is
an approximate match to this one-step path. Allowing
approximate matches would inflate the path ranking.

Top-one, -two, and -three metabolite ranking metrics are
designed to measure how well the predicted metabolite with
the highest metabolite scores (Figure 4) corresponds to an
observed metabolite. Top-N accuracy of a set is the fraction of
predicted networks that have experimentally observed
metabolites among the N predicted metabolites with the
highest metabolite scores. Note that an obstacle can arise in
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computing metabolic scores for networks that contain a cycle.
Though an individual enumerated path is not allowed to have a
cycle, a cycle can still arise in the global network structure.
Consider the case of a network with the following two paths: S
—- M, > M, > Pand S - M, » M, — P. The method for
computing metabolite scores, as initially described, would
result in an infinite loop due to the one-step cycle between M,
and M,. Since networks with a cycle show up in under 1% of
the networks predicted during our experiments, they are
ignored when computing metabolite scores for the following
results over the full metabolic network data set.

We also compute the area under the receiver-operating
characteristic curve (AUC) using metabolite scores and their
respective labels, 1 or 0, indicating whether the metabolite was
experimentally observed. We then calculate an average AUC
across all of the networks to measure the performance of this
task across the whole data set.

Among the 817 metabolic networks with at least one
intermediate in our data set, XenoNet was able to complete
710 networks. The path ranking, top-N, and average AUC
metrics calculated over these 710 networks (Table 2). Overall,
XenoNet was able to accurately predict experimentally
observed pathways with 93.6% path-rank accuracy. The
model also accurately predicted experimentally observed
metabolites with 51.9, 66.2, 77.5, and 78.7% top-one, -two,
-three, and average AUC accuracies, respectively.

To assess the value of scoring pathways and metabolites
using predictions from the Rainbow XenoSite model, we
compare XenoNet’s performance on path ranking, Top-N, and
average AUC metrics to a model where these predictions are
permuted (Table 2). Specifically, for each of the predicted
networks, while the nodes and edges are kept in the original
order, the scores assigned by Rainbow XenoSite to the edges
are randomly permuted. The values computed for the
“randomly permuted weights” case are computed over 10
trials. Overall, the randomly permuted model predicts
experimentally observed pathways with 61.8% path-rank
accuracy. The randomly permuted model also predicts
experimentally observed metabolites with 31.9, 46.4, 60.7,
and 62.5% Top-one, -two, -three, and average AUC accuracies,
respectively.

We use two different statistical tests to assess the statistical
significance of the difference in the performance of XenoNet
and the randomly permuted model. For path ranking and top-
N metrics, we use McNemar’s test. McNemar’s test is a paired
nonparametric statistical hypothesis test for evaluating the
disagreements between two cases.”” In the context of
classification, McNemar’s test can be used to interpret whether
both models make different errors and the difference in the
relative proportions of those errors. The two cases are the
unmodified XenoNet and the randomly permuted XenoNet,
and a contingency table is constructed using both cases based
on the numbers of highest-ranked pathways or metabolites that
are experimentally observed versus those that are not. The null
hypothesis of marginal homogeneity would mean that there is
no effect in regards to where the edge weights are shuffled in

https://dx.doi.org/10.1021/acs.jcim.0c00361
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Table 3. XenoNet Outperforms Published Methods on the GLORY Test Set”

GLORY, MaxCoverage

Mode
precision 0.08
recall 0.83
total number of predicted metabolites 793
mumber of successfully predicted reported 67

metabolites

AUC 67.6%
Top-1 68.97%
Top-2 72.41%
Top-3 75.86%

GLORY, MaxEfficiency

Mode SyGMa  BioTransformer  XenoNet
0.16 0.15 0.17 0.06
0.64 0.74 0.72 0.89

327 406 344 1179
52 60 58 72
50.1% 73.3%

68.97% 0% 72.41%

72.41% 48.28% 75.86%

75.86% 68.97% 79.31%

“For each metric, the best method’s value is displayed in bold. Values for both GLORY variants, SyGMa, and BioTransformer were extracted from

the initial comparisons made in de Bruyn Kops et al.>*

the network, i.e., the two cases should have the same error
rate.” McNemar’s test yielded a p-value less than 0.001 for
both path ranking and Top-N metrics, so there is strong
evidence to reject the null hypothesis. For the average AUC
metric, we use a paired t-test. Comparing the performance
between the two cases via a paired t-test yielded a p-value less
than 0.001. In summary, XenoNet performs better than a
randomly permuted model across all considered metrics.

Comparison to Prior Work. No published model does the
exact main task that XenoNet is designed for: to take a pair of
start-target molecules as inputs and output a network of
metabolic pathways between them. The closest comparable
works in the literature include GLORY, BioTransformer, and
SyGMa.*"**** However, the main task of these methods is to
receive a molecule as input and output computationally
predicted metabolites. Though these prior works do not readily
support XenoNet’s main task of interest, XenoNet does
support the main task of these prior works and so we can
compare XenoNet to them in some capacity.

To enable this comparison, we first ran the naive XenoNet
on GLORY'’s reference set of 848 parent molecules with 1588
known metabolites.>* This reference set was used by GLORY's
MaxEfficiency mode to decide upon a SOM probability cutoff
that could be used as a preliminary filter and by GLORY’s
MaxCoverage mode to develop a priority score for ranking
predicted metabolites. After XenoNet produced networks for
each of the 848 parent molecules in the reference set,
precision-recall curves for each of the 20 phase-I reaction types
were used to define an optimal, reaction-type-specific threshold
for filtering predicted metabolites. For each rule, the filtering
threshold was set to the lowest threshold that did not reduce
the original recall across the reference set’s known metabolites.
Similar to how the thresholds were used by GLORY, they are
used to filter predicted metabolites for a test substrate after its
metabolic network is generated by XenoNet.

As stated earlier, the extent to which probabilities generated
by XenoNet may be compared across different reaction rules is
unknown. The scores emitted for each reaction type are not
proven to be well scaled across different reaction rules.
Keeping the filtering threshold constant for each reaction class
could result in a threshold that is high enough to completely
filter out certain reaction rules from the network. As a result,
we individually set the filtering threshold for each rule. The
effect of the filtering step served mostly to filter out those
reaction rules that were not being tested in the reference set.
Ultimately, the only reaction rules relevant to yielding the
observed metabolites in the reference set were hydroxylation,
nitrogen reduction, dehydrogenation, nitrogen oxidation,
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oxidative dehalogenation, hydrolysis, sulfur oxidation, deal-
kylation, and epoxidation. Networks were still generated using
the full set of reaction rules, but metabolites resulting from
reaction rules outside of those listed above were filtered out
from the final output.

Next, we tested the naive XenoNet variant on the curated
test set of 29 substrates and 81 products that was used in
GLORY® to compare against BioTransformer’' and
SyGMa.>® None of the 29 substrates in this test set were
contained within the GLORY reference set. In this test,
XenoNet was set to generate metabolic networks using only
the substrates without any secondary target molecules to
enforce paths to terminate at. We allotted a S min time limit
for XenoNet to generate each metabolic network and set the
network’s depth limit to 1. The generation of networks
included both the inference of metabolite structures as well as
assigning edge weights via SOM predictions generated by
Rainbow XenoSite. The final list of predicted metabolites is
filtered using the thresholds described in the previous
paragraph. Production of the metabolites from the 29 test
set substrates by XenoNet was computed on a single Intel
Xeon Processor ES-2630 v3 CPU using a Linux operating
system. The total run time using a single core was 80.5 min,
and the average run time per parent molecule was 2.78 min.

XenoNet outperformed both GLORY variants, SyGMa, and
BioTransformer at multiple metrics (Table 3). A metabolite is
considered to be a true positive when it is both predicted and
experimentally observed. Precision is the proportion of true
positives among all predicted metabolites, and recall, also
known as sensitivity, is the proportion of true positives among
all experimentally observed metabolites. The precision values
on the test set for XenoNet, GLORY MaxCoverage, GLORY
MaxEfficiency, SyGMa, and BioTransformer are 0.06, 0.08,
0.16, 0.15, and 0.17, respectively. The recall values on the same
test set for XenoNet, GLORY MaxCoverage, GLORY
MaxEfficiency, SyGMa, and BioTransformer are 0.89, 0.83,
0.64, 0.74, and 0.72, respectively. It should be noted that while
XenoNet has lower precision than other models, it has a higher
recall. The trade-off between precision and recall is dependent
on the chosen threshold, so either metric is not reliable to
compare between models. The receiver-operating curves
(ROC) and their corresponding areas under the curve
(AUC) are more reliable metrics than precision and recall.
The AUC of XenoNet, GLORY MaxCoverage, and SyGMa are
73.3, 67.6, and 50.1%, respectively (Table 3). We were unable
to construct a ROC curve and calculate the AUC for
BioTransformer based on their publication, but their recall of
0.72 is lower than other models if all of them were set to have

https://dx.doi.org/10.1021/acs.jcim.0c00361
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Figure 13. XenoNet is superior to published metabolite prediction models. The receiver-operating characteristic curves (ROC) and their
corresponding areas under the curve (AUC) are reliable metrics to compare between the models. The AUC of XenoNet, GLORY MaxCoverage,
and SyGMa are 73.3, 67.6, and 50.1%, respectively. We were unable to construct a ROC curve and calculate the AUC for BioTransformer based on
their publication, but their recall of 0.72 is lower than other models if all of them were set to have the same precision of 0.17.
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Figure 14. XenoNet is superior to GLORY MaxCoverage in terms of the recovery rate. Across all thresholds, XenoNet’s recovery rate is higher than

GLORY’s.

the same precision of 0.17 (Figure 13). In addition, since each
metabolic transformation was assigned with a score based on
Rainbow XenoSite’s prediction and the network depth limit
was set to 1, we use these scores as the proxy for the likelihood
that the corresponding metabolites would exist. Here, the top-
N metric is the fraction of substrates that have at least one
experimentally observed metabolite among their group of N
predicted metabolites with the highest scores. The top-3
performance for XenoNet, GLORY, and SyGMa is 79.3, 75.9,
and 69.0%, respectively.

Moreover, XenoNet predicts many more metabolite
structures than other models because it has a broader chemical
transformation rule set. XenoNet’s rule set was derived from
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Rainbow XenoSite’s database, which covered 92.3% of phase-I
reactions. In contrast, the most extensive rule sets by previous
models, GLORY, was based on FAME 2, which covered only
48.0% of phase-I reactions.”® While this feature lowers
XenoNet’s precision, it could also discover metabolites that
were missed by experimental methods. Depending on the
experimental assay and conditions used, certain metabolites are
not easily detected. Computational prediction could serve as a
guide for future experiments.'®'®

In terms of the recovery rate, XenoNet outperformed
GLORY MaxCoverage Mode at all thresholds (Figure 14).
GLORY MaxCoverage Mode was chosen for comparison
because it previously outperformed BioTransformer, SyGMa,

https://dx.doi.org/10.1021/acs.jcim.0c00361
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and GLORY MaxEfhiciency Mode with regard to the recovery
rate metric.”* XenoNet can predict at least 50% of the known
metabolites for 96.6% of the parent molecules in the test data
set, while GLORY MaxCoverage did so for 90% of the parent
molecules. The proportion of parent molecules that have all of
their known metabolites predicted is 72.4% for XenoNet and
62.0% for GLORY MaxCoverage.

In terms of absolute numbers, XenoNet captured 72 of the
81 known metabolites in the test set. The method with the
next highest number of captured metabolites, GLORY
MaxCoverage, yields 67 of the known metabolites. There
were nine metabolites of eight parent molecules that XenoNet
was not able to predict when the models’ depth limit was 1.
These nine metabolites were also missed by published models.
However, XenoNet is designed to infer metabolic structures
from preceding known, potentially reactive, metabolites. We
wanted to test whether XenoNet’s ability to specify a given
target metabolite in addition to a start metabolite could allow
for the detection of pathways between each of the parent
molecules and their missed metabolite(s). XenoNet was run at
a depth limit of 3 on 9 substrate—product pairs of molecules
representing the parent molecule and one of their missed
metabolites. For 5 of the 9 networks, paths were found linking
the parent molecule and their previously missed metabolite.
The generated networks by XenoNet are included in Figures
S2—S6. The four remaining pairs of parent molecules and their
missed metabolites that no method found a valid path for are
included in Figure S7. On manual inspection, most of the
missed cases require metabolic transformations that are phase-
II reaction types or rare phase-I reaction types that our
Rainbow XenoSite model does not yet account for. We plan to
expand our rule set to cover these reactions in future work.

B MODEL LIMITATIONS AND FUTURE DIRECTIONS

Future development of XenoNet can be classified into
improvements and extensions of the model and further
exploration of the model’s capabilities to real-world applica-
tion. To begin with, a key assumption in the current
implementation is that the probability of each metabolic
transformation is memoryless or independent of the state it
came from. This deficiency may be overcome by adjusting
probabilities to take contextual dependencies into account. As
an example, deeper metabolic steps are less likely since
excretion probability is higher with each given transformation.
One way to amend this would be to have a parameter that
adjusts the metabolic transformation probabilities as a function
of the depth at which the transformation takes place.

Besides, the current heuristics could be modified further to
resolve weaknesses highlighted by the previous comparisons
raised between the XenoNet variants. With regards to the top-
N heuristics, the relationship between reaction-type specific
and reaction-type agnostic variants can be explored further.
Specifically, we need to find the best way to tune the value of N
on large data sets of substrate—product pairs outside of the
AMD data set.

If the rule sets from the Metabolic Forest model can be
implemented in the opposite direction, from child to parent
molecule, then a bidirectional search could also be employed.
Consider a bidirectional search on a network with a depth limit
of 4. The bidirectional search will aim to form two sets of
paths. The first set of paths is formed by enumerating all paths
of a depth limit of 2 that begin with the starting metabolite.
The second set of paths is formed by enumerating all paths of a
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depth limit of 2 that begin with the target metabolite.
Afterward, paths from the start to the target may be discovered
by linking the two sets of paths at points where they have
overlapping states.

As previously mentioned, since heuristics are deterministic,
improvements may be noticed if a variant is developed that
introduces stochasticity, which could escape the inference of
spurious metabolites. The top-N heuristic could be modified to
be a Monte—Carlo heuristic, where we generate N metabolites
drawn according to their relative probabilities across all the
possible metabolites. We can run several trials of Monte—Carlo
sampling and concatenate all discovered pathways. Such a
heuristic would increase the likelihood of discovering pathways
with a low probability first step, but successive high probability
steps.

An additional mode allowing for multiple targets to be
specified in the input could also be implemented to improve
the functionality of XenoNet. Furthermore, XenoNet infers
metabolites and assigns predictions to the metabolic trans-
formations that preclude them, but it does not capture the full
bioactivation process. Previously, we have developed a SOM
model for predicting the reactivity of a molecule with respect
to DNA, protein, GSH, and cyanide.41 A natural next step is to
incorporate this reactivity model into XenoNet as a way to
predict whether an inferred metabolite is likely to be reactive.

Finally, XenoNet is specifically designed to infer inter-
mediate metabolites when drug molecules form reactive
metabolites. XenoNet’s capabilities could be further assessed
by using it to screen for missing intermediates among known,
withdrawn drugs that form reactive metabolites. XenoNet
could be applied to drug-reactive metabolite pairs to find
sequential metabolic transformations that lead to reactive
metabolite formation and identify previously unknown
intermediate metabolites for further experimental validation.

B CONCLUSIONS

We have established a method, XenoNet, that combines a
SOM model with a structure inference model for the
enumeration of metabolic pathways between a known parent
molecule and target molecule and the intermediate metabolite
structures that link them. XenoNet can predict experimentally
observed pathways and intermediate metabolites with high
accuracies. Our method can also function in a similar capacity
to prior methods, such as BioTransformer and GLORY, when
only given a parent molecule as input. When given the task,
XenoNet outperforms prior methods across multiple metrics.
While we have yet to model the full bioactivation pathway
potential between two molecules or starting from a single
molecule, we anticipate the successful incorporation of
reactivity models to XenoNet’s workflow in the near future.
Incorporation of reactivity into XenoNet is a natural extension
of the current work and will hopefully cement XenoNet as an
informative tool that experimentalists can use to generate
specific, testable hypotheses for understanding reactive
metabolite formation. Importantly, if it helps experimentalists
discover otherwise unknown intermediates, they can then use
that knowledge to modify drug molecules to prevent the
formation of the intermediate(s) that are antecedent to
reactive metabolite formation.

https://dx.doi.org/10.1021/acs.jcim.0c00361
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metabolic network data set, each network has its edges
annotated with their corresponding reaction AMD
registry numbers (ZIP)

B AUTHOR INFORMATION

Corresponding Author
S. Joshua Swamidass — Department of Pathology and
Immunology, Washington University School of Medicine, St.
Louis, Missouri 63110, United States; © orcid.org/0000-
0003-2191-0778; Email: swamidass@wustl.edu

Authors

Noah R. Flynn — Department of Pathology and Immunology,
Washington University School of Medicine, St. Louis, Missouri
63110, United States; ® orcid.org/0000-0002-8542-8887

Na Le Dang — Department of Pathology and Immunology,
Washington University School of Medicine, St. Louis, Missouri
63110, United States; ® orcid.org/0000-0001-7458-1264

Michael D. Ward — Department of Biochemistry and Molecular
Biophysics, Washington University School of Medicine, St. Louis,
Missouri 63110, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.0c00361

Funding

Research reported in this publication was supported by the
National Library Of Medicine of the National Institutes of
Health under Award no. RO1ILM012222 and RO1LMO012482.
Computations were performed using the facilities of the
Washington University Center for High Performance Comput-
ing, which were partially funded by National Institutes of
Health Grants nos. 1S10RR022984-01A1 and
1S100D018091-01. The content is solely the responsibility
of the authors and does not necessarily represent the official
views of the National Institutes of Health. We also thank both
the Department of Immunology and Pathology at the
Washington University School of Medicine and the Wash-
ington University Center for Biological Systems Engineering
for their generous support of this work.

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

The authors acknowledge that they have no competing
financial interests. We thank the developers of the open-source
chemoinformatics tools Open Babel** and RDKit, of which we
made extensive use. Specially thanks to Tyler B. Hughes for
developing the Metabolic Forest model, which our current

3448

model employed heavily. Computations were performed using
the facilities of the Washington University Center for High
Performance Computing, which were partially funded by NIH
Grants nos. 1ISI0ORR022984-01A1 and 1S100D018091-01.

Bl ABBREVIATIONS

AMD, Accelrys Metabolite Database; AUC, area under the
receiver-operating characteristic curve; IADR, idiosyncratic
adverse drug reaction; XenoNet, metabolic network; ROC,
receiver-operating characteristic; SoM, site of metabolism

B REFERENCES

(1) Kalgutkar, A. S.; Didiuk, M. T. Structural Alerts, Reactive
Metabolites, and Protein Covalent Binding: How Reliable Are These
Attributes as Predictors of Drug Toxicity. Chem. Biodiversity 2009, 6,
2115-2137.

(2) Ostapowicz, G.; Fontana, R. J; Schiedt, F. V.; Larson, A;
Davern, T. J; Han, S. H.; McCashland, T. M.; Shakil, A. O.; Hay, J.
E.; Hynan, L.; Crippin, J. S.; Blei, A. T.; Samuel, G.; Reisch, J.; Lee,
W. M. Results of a prospective study of acute liver failure at 17 tertiary
care centers in the united states. Ann. Intern. Med. 2002, 137, 947—
954.

(3) Srivastava, A.; Maggs, J.; Antoine, D.; Williams, D.; Smith, D.;
Park, B. Adverse Drug Reactions; Springer, 2010; pp 165—194.

(4) Watkins, P. B.; Seeff, L. B. Drug-Induced Liver Injury: Summary
of a Single Topic Clinical Research Conference. Hepatology 2006, 43,
618—631.

(5) Babai, S.; Auclert, L.; Le-Louie, H. Safety data and withdrawal of
hepatotoxic drugs. Therapie. 2018. DOI: 10.1016/j.ther-
ap.2018.02.004.

(6) Uetrecht, J.; Naisbitt, D. J. Idiosyncratic Adverse Drug
Reactions: Current Concepts. Pharmacol. Rev. 2013, 65, 779—808.

(7) Aithal, G. P.; Ramsay, L.; Daly, A. K.; Sonchit, N.; Leathart, J. B.
S.; Alexander, G.; Kenna, J. G.; Caldwell, J; Day, C. P. Hepatic
adducts, circulating antibodies, and cytokine polymorphisms in
patients with diclofenac hepatotoxicity. Hepatology 2004, 39, 1430—
1440.

(8) Robin, M. A.,; Maratrat, M,; Roy, M. L,; Breton, E. P. L;
Bonierbale, E.; Dansette, P.; Ballet, F.; Mansuy, D.; Pessayre, D.
Antigenic targets in tienilic acid hepatitis. Both cytochrome P450
2C11 and 2Cl11-tienilic acid adducts are transported to the plasma
membrane of rat hepatocytes and recognized by human sera. J. Clin.
Invest. 1996, 98, 1471—1480.

(9) Cribb, A. E; Nuss, C. E,; Alberts, D. W.,; Lamphere, D. B;
Grant, D. M,; Grossman, S. J; Spielberg, S. P. Covalent Binding of
Sulfamethoxazole Reactive Metabolites to Human and Rat Liver
Subcellular Fractions Assessed by Immunochemical Detection. Chem.
Res. Toxicol. 1996, 9, S00—507. PMID: 883905S.

(10) Skipper, P. L; Kim, M. Y,; Sun, H. L; Wogan, G. N,;
Tannenbaum, S. R. Monocyclic aromatic amines as potential human
carcinogens: old is new again. Carcinogenesis 2010, 31, S0O—S8.

(11) Wells, P. G.; Lee, C. J. J.; McCallum, G. P.; Perstin, J.; Harper,
P. A. Adverse Drug Reactions; Springer: Berlin, 2010; pp 131—-162.

(12) Kalgutkar, A. S.; Gardner, 1; Obach, R. S; Shaffer, C. L;
Callegari, E.; Henne, K. R;; Mutlib, A. E; Dalvie, D. K; Lee, J. S,;
Nakai, Y.; O'Donnell, J. P.; Boer, J.; Harriman, S. P. A Comprehensive
Listing of Bioactivation Pathways of Organic Functional Groups. Curr.
Drug Metab. 2008, 6, 161-225.

(13) Evans, D. C,; Watt, A. P.; Nicoll-Griffith, D. A.; Baillie, T. A.
Drug-Protein Adducts: An Industry Perspective on Minimizing the
Potential for Drug Bioactivation in Drug Discovery and Development.
Chem. Res. Toxicol. 2004, 17, 3—16.

(14) Lewis, D. F; Ito, Y. Human cytochromes P450 in the
metabolism of drugs: new molecular models of enzyme-substrate
interactions. Expert Opin. Drug Metab. Toxicol. 2008, 4, 1181—1186.
PMID: 18721112.

https://dx.doi.org/10.1021/acs.jcim.0c00361
J. Chem. Inf. Model. 2020, 60, 3431—3449



Downloaded via WASHINGTON UNIV on October 09, 2024 at 02:40:57 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

(15) Testa, B.; Pedretti, A.; Vistoli, G. Reactions and Enzymes in the
Metabolism of Drugs and Other Xenobiotics. Drug Discovery Today
2012, 17, 549—560.

(16) Dang, N. L.; Hughes, T. B.; Miller, G. P.; Swamidass, S. J.
Computationally Assessing the Bioactivation of Drugs by N-
Dealkylation. Chem. Res. Toxicol. 2018, 31, 68—80.

(17) Iverson, S. L.; Uetrecht, J. P. Identification of a Reactive
Metabolite of Terbinafine: Insights Into Terbinafine-Induced
Hepatotoxicity. Chem. Res. Toxicol. 2001, 14, 175—181.

(18) Barnette, D. A; Davis, M. A;; Dang, N. L,; Pidugu, A. S,;
Hughes, T.; Swamidass, S. J.; Boysen, G.; Miller, G. P. Lamisil
(terbinafine) toxicity: Determining pathways to bioactivation through
computational and experimental approaches. Biochem. Pharmacol.
2018, 156, 10—21.

(19) Barnette, D. A; Davis, M. A; Flynn, N,; Pidugu, A. S,;
Swamidass, S. J.; Miller, G. P. Comprehensive kinetic and modeling
analyses revealed CYP2C9 and 3A4 determine terbinafine metabolic
clearance and bioactivation. Biochem. Pharmacol. 2019, 170,
No. 113661.

(20) Davis, M. A; Barnette, D. A; Flynn, N. R; Pidugu, A. S;
Swamidass, S. J.; Boysen, G.; Miller, G. P. CYP2C19 and 3A4
Dominate Metabolic Clearance and Bioactivation of Terbinafine
Based on Computational and Experimental Approaches. Chem. Res.
Toxicol. 2019, 32, 1151—1164.

(21) Rydberg, P.; Gloriam, D. E.; Zaretzki, J.; Breneman, C.; Olsen,
L. SMARTCyp: A 2D Method for Prediction of Cytochrome P450-
Mediated Drug Metabolism. ACS Med. Chem. Lett. 2010, 1, 96—100.

(22) Zaretzki, J.; Rydberg, P.; Bergeron, C.; Bennett, K. P.; Olsen,
L; Breneman, C. M. RS-Predictor Models Augmented With
SMARTCyp Reactivities: Robust Metabolic Regioselectivity Predic-
tions for Nine CYP Isozymes. J. Chem. Inf. Model. 2012, 52, 1637—
1659.

(23) Rudik, A. V.; Dmitriev, A. V.; Lagunin, A. A; Filimonov, D. A,;
Poroikov, V. V. Metabolism Site Prediction Based on Xenobiotic
Structural Formulas and PASS Prediction Algorithm. J. Chem. Inf.
Model. 2014, 54, 498—507.

(24) Rudik, A.; Dmitriev, A.; Lagunin, A.; Filimonov, D.; Poroikov,
V. SOMP: Web-Server for in Silico Prediction of Sites of Metabolism
for Drug-Like Compounds. Bioinformatics 20185, 31, 2046—2048.

(25) Adams, S. E. Molecular Similarity and Xenobiotic Metabolism.
Ph.D. Thesis, University of Cambridge, 2010.

(26) Sicho, M.; Stork, C.; Mazzolari, A.; de Bruyn Kops, C.; Pedretti,
A,; Testa, B.; Vistoli, G.; Svozil, D.; Kirchmair, J. FAME 3: Predicting
the Sites of Metabolism in Synthetic Compounds and Natural
Products for Phase 1 and Phase 2 Metabolic Enzymes. ]. Chem. Inf.
Model. 2019, 59, 3400—3412.

(27) Zheng, M.; Luo, X.; Shen, Q.; Wang, Y.; Dy, Y.; Zhu, W,; Jiang,
H. Site of Metabolism Prediction for Six Biotransformations Mediated
by Cytochromes P450. Bioinformatics 2009, 25, 1251—1258.

(28) He, S; Li, M,; Ye, X;; Wang, H; Yu, W.; He, W.; Wang, Y,;
Qiao, Y. Site of Metabolism Prediction for Oxidation Reactions
Mediated by Oxidoreductases Based on Chemical Bond. Bioinfor-
matics 2017, 33, 363—372.

(29) Matlock, M. K; Hughes, T. B.; Swamidass, S. J. XenoSite
Server: A Web-Available Site of Metabolism Prediction Tool.
Bioinformatics 2018, 31, 1136—1137.

(30) Dang, N. L.; Matlock, M. K;; Hughes, T. B.; Swamidass, S. J.
The Metabolic Rainbow: Deep Learning Phase I Metabolism in Five
Colors. J. Chem. Inf. Model. 2020, 60, 1146—1164.

(31) Djoumbou-Feunang, Y.; Fiamoncini, J.; Gil-de-la Fuente, A;
Greiner, R.; Manach, C.; Wishart, D. S. BioTransformer: a
comprehensive computational tool for small molecule metabolism
prediction and metabolite identification. J. Cheminf. 2019, 11, No. 2.

(32) Meng, J; Li, S;; Liu, X. RD-Metabolizer: an integrated and
reaction types extensive approach to predict metabolic sites and
metabolites of drug-like molecules. Chem. Cent. ]. 2017, 11, No. 65.

(33) Ridder, L.; Wagener, M. SyGMa: Combining Expert Knowl-
edge and Empirical Scoring in the Prediction of Metabolites.
ChemMedChem 2008, 3, 821—832.

3449

(34) de Bruyn Kops, C.; Stork, C.; éiChO, M.; Kochev, N,; Svozil, D.;
Jeliazkova, N.; Kirchmair, J. GLORY: Generator of the Structures of
Likely Cytochrome P450 Metabolites Based on Predicted Sites of
Metabolism. Front. Chem. 2019, 7, No. 402.

(35) Tian, S.; Djoumbou-Feunang, Y.; Greiner, R.; Wishart, D. S.
CypReact: A Software Tool for in Silico Reactant Prediction for
Human Cytochrome P450 Enzymes. J. Chem. Inf. Model. 2018, S8,
1282—1291.

(36) Hughes, T. B; Dang, N. L; Kumar, A; Flynn, N. R;
Swamidass, S. J. The Metabolic Forest: Predicting the Diverse
Structures of Drug Metabolites Under Review, 2020.

(37) Landrum, G. Open-Source Cheminformatics and Machine
Learning, 2006, http://www.rdkit.org/ (accessed June 14, 2017).

(38) Youden, W. J. Index for rating diagnostic tests. Cancer 1950, 3,
32-35.

(39) McNemar, Q. Note on the sampling error of the difference
between correlated proportions or percentages. Psychometrika 1947,
12, 153—157.

(40) Dietterich, T. G. Approximate Statistical Tests for Comparing
Supervised Classification Learning Algorithms. Neural Comput. 1998,
10, 1895—1923.

(41) Hughes, T. B,; Dang, N. L; Miller, G. P.; Swamidass, S. J.
Modeling Reactivity to Biological Macromolecules with a Deep
Multitask Network. ACS Cent. Sci. 2016, 2, 529—537.

(42) OLBoyle, N. M, Banck, M.; James, C. A; Morley, C;
Vandermeersch, T.; Hutchison, G. R. Open Babel: An Open
Chemical Toolbox. J. Cheminf. 2011, 3, No. 33.

https://dx.doi.org/10.1021/acs.jcim.0c00361
J. Chem. Inf. Model. 2020, 60, 3431—3449



