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Example XenoNets
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Figure S1. XenoNet identifies pathways between terbinafine (TBF) and TBF-A at a depth
limit of 2 and beam width of 5. Several identified intermediate metabolites are consistent with
those reported in literature.1,2 In this example, XenoNet is able to restrict its search space to the
N-dealkylation rule set. Scores on each edge correspond to predictions from the phase I SoM
model. The heat map overlay corresponds to the site of reactivity model with respect to GSH.
Note that metabolite scores assigned to each node were computed by the XenoNet algorithm and
not the bidirectional MPNN.
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Figure S2. In this example, XenoNet demonstrates its ability to restrict the search space by
both a reaction class (quinone formation) and a substructure (sites on or immediately adjacent to
the benzene ring) for Flecainide (depth limit 1, beam width 10. Scores on each edge correspond
to predictions from the phase I SoM model. The heat map overlay corresponds to the site of
reactivity model with respect to GSH. Note that metabolite node scores were computed by the
XenoNet algorithm and not the bidirectional MPNN.
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Figure S3. In this example, XenoNet demonstrates its ability to restrict the search space by
both a reaction type (S-oxidation) and a substructure (sites on thiophene) for Methapyrilene
(depth limit 2, beam width 10. Scores on each edge correspond to predictions from the phase I
SoM model. The heat map overlay corresponds to the site of reactivity model with respect to
GSH. Note that metabolite node scores were computed by the XenoNet algorithm and not the
bidirectional MPNN.
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Examples of Intermediates that XenoNet Found and Missed
during Network Generation

Valid Path Not Found    

Figure S4. Examples of annotated intermediates that XenoNet succeeded and failed in finding
during network generation. The example intermediates were randomly sampled. XenoNet has
an easier time of finding intermediates with distinct, explicit steps because it strictly follows a
set of transformation rules. The higher the granularity at which an annotated intermediate was
recorded in the AMD, the greater the difficulty in XenoNet’s ability to infer that intermediate if
limiting search to a depth of 3.
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Rainbow Model Reaction Class Calibration
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Figure S5. The model has differing levels of confidence in its reaction type specific predictions
and incorporation of reaction type information may assist learning relative comparisons between
predictions across different reaction types. Individually, site-level predictions specific to unstable
oxygenation, reduction, and hydrolysis reaction types are well calibrated. Site-level predictions
specific to stable oxygenation and dehydrogenation reaction types are not well calibrated. How-
ever, only the hydrolysis site-level predictions are probabilistic, as the unstable oxygenation and
reduction site-level predictions do not range from 0 to 1.
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Rainbow Model Site-level Reaction Class Thresholds
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Figure S6. The optimal thresholds for binarizing the Rainbow model’s site-level predictions are
different for each reaction type. Thus, encoding reaction type information allows the model to
adjust influence of predictions based on the Rainbow model’s variability in confidence between
different reaction types. To define the binarization thresholds, we computed the Youden index as
the optimal point on the cross-validated ROC curves computed from the Rainbow model’s site-
level reaction predictions on its training data for each reaction type.3,4 The site-level ROC curve
is displayed across 10,280, 5,811, 2,794, 1,590, and 3,869 sites of stable oxygenation, unstable
oxygenation, dehydrogenation, reduction, and hydrolysis respectively. The light colored arrows
for each reaction type point out the corresponding location of the optimal site-level cutoff on
that reaction type’s respective ROC curve. The optimal cutoff for binarizing site-level predictions
was 0.015, 0.0063, 0.0034, 0.0031, and 0.0083 sites of stable oxygenation, unstable oxygenation,
dehydrogenation, reduction, and hydrolysis, respectively.
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Node Degree Relation to Class Labels
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Figure S7. In the absence of node features, node in- and out-degree may be exploited as an
informative feature with no additional computational overhead to compute. Though there is no
clear demarcation, nodes with high in-degree and low out-degree tend to be experimentally ob-
served and nodes with low in-degree and high out-degree tend to not be experimentally observed.
Intuitively, a node with high in-degree is likely to be visited during metabolism and have a better
chance of being observed. In contrast, a node with a high out-degree is likely to be transient or
not as stable and have a lesser chance of being observed. This instability may cause the inter-
mediate metabolite to be missed during experimental study, but it is possible the intermediate
metabolite is short-lived enough to not be pernicious. The in- and out-degrees are calculated for
each intermediate node using the weighted paths that enter and exit from the node. If multiple
edges exist of same directionality between a pair of nodes, only the highest weighted edge is con-
sidered. Start and target nodes are left out as they are not being predicted on and significantly
skew the distribution to high out-degrees and in-degrees, respectively.
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Distribution of Information Silos for unidirectional MPNN
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Figure S8. The first variant of the proposed MPNN architecture only aggregates messages
from a node’s parents and results in an inability for many competing pathways to be considered.
Assuming the first variant’s strategy, we compute the number of disconnected components that
form information silos per network. In this case, we define an information silo as a group of
intermediate nodes for which none of the intermediate nodes can be influenced by the hidden
embedding state of any other intermediates nodes in the network, regardless of the k-hop neigh-
borhood considered. On average, a network contains 5 information silos (minimum 1, maximum
18). Comparatively, the second variant’s strategy results in 0 information silos for all networks.
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Hyperparameters for Model Selection

Table S1. Hyperparameters used for model selection during nested cross validation inner loop.
For the bidirectional variant used in follow-up case studies, the optimal hyperparameter values
are bolded.

Unidirectional
Variant

Bidirectional
Variant

Number of graph
convolutional layers [1, 2, 3, 4] [2, 4, 6]

Graph convolution
output embedding size [8, 16, 32, 64] [8, 16, 32, 64]

MLP hidden units [8, 16, 32] [8, 16, 32]
DropOut [0.0, 0.15, 0.20, 0.25] [0.0, 0.15, 0.20, 0.25]
Epochs 200 200
Optimizer Adam Adam
Learning rate [1e-1, 1e-2, 1e-3] [1e-1, 1e-2, 1e-3]
Weight decay [0, 5e-1, 5e-2, 5e-3] [0, 5e-1, 5e-2, 5e-3]
Neighbors
aggregation [mean, max, sum] [mean, max, sum]

JumpingKnowledge
aggregation [–, concatenation, max, LSTM] [–, concatenation, max, LSTM]
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Summary of Start-Multitarget Data Set Variants

Table S2. We evaluated the bidirectional variant, which was trained on networks constructed
with a depth limit of 3 and no beam width constraint, for inference on networks constructed using
different parameter values. The parameters for each variant are a depth limit of 2 with no beam
width constraint, a depth limit of 3 and beam width of 5, and a depth limit of 2 and beam width
of 5. A depth limit of 2 is selected as this is the lowest depth limit setting than can result in
intermediate metabolites. A beam width of 5 is the lowest recommended beam width setting, as
any lower does not result in meaningful decreases in time cost while increasing the chance that
paths of interest are missed.

Depth Limit 3 Depth Limit 3
Beam Width 5 Depth Limit 2 Depth Limit 2

Beam Width 5

Number of Networks 311 253 155 151
Number of Experimentally Observed Intermediates 516 302 191 183
Number of Experimentally Unobserved Intermediates 6090 1077 229 176
Mean Number of Nodes per Network 24 8 5 5
Max Number of Nodes per Network 102 16 16 14
Min Number of Nodes per Network 3 3 3 3
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Influence of Important Intermediate Cut-off on Extracted
Subnetworks
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Figure S9. Optimal cut-off value depends on application context, sensitivity to possible false
positives, and whether the cut-off results in a failure case. A cut-off of 1 minimized the number
of unimportant intermediates to 0 and kept 722 important intermediates. The average network
size was reduced from 24 ± 16 nodes to 4 ± 2 nodes. However, 421 important intermediates
were excluded and 71 failure cases resulted. Alternatively, a cut-off of 0.5 was the maximum
cut-off that kept all 1,143 important intermediates and did not cause a single failure case. The
average network size was reduced to 15 ± 11 nodes. The error bars for the average number of
nodes represents the standard deviation. Though a 0.5 cut-off results in 0 failure cases, 2,664
unimportant intermediates are retained.
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MPNN Training Architectures
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Figure S10. A) Example unidirectional metabolite scoring model with 2 graph convolutional
layers. The message passing update for each node is calculated using an edge conditioned
convolutional layer.5,6 The output hidden embedding vector is processed by subsequent layer
normalization and ReLU activation before being submitted to the next graph convolution layer.
Graph convolution layers are aggregated and processed by a 2-layer MLP. The final layer output
ranges from zero to one and reflects the metabolic importance of the metabolite. B) Example
bidirectional metabolite scoring model with 4 graph convolutional layers, in which the second block
of components reverses flow of message passing from child to parent nodes. C) We consider
differences in information flow to the black node when using the unidirectional or bidirectional
variants. Assuming the architecture is deep enough to learn from node’s in a 2-hop neighborhood,
the unidirectional variant allows for information flow from the dark grey nodes to the black
node. In the unidirectional variant, the intermediate nodes on the left and right side of the
network remain disconnected from each other. D) In the bidirectional variant, information is
able to flow back upwards to the black node from its child metabolite, which would have been
previously exposed to information from its 2-hop parent neighborhood. Thus, the black node is
not disconnected from the greater network context and may be able to weigh its likelihood of
occurring relative to competing pathways.
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